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Abstract
From ‘‘pop-up’’ road closures to decreased transit frequencies, the COVID-19 pandemic has changed the overall supply of
transport options. Even in the absence of a change in bikeshare supply, the pandemic provides a ‘‘natural experiment’’ under
which we can assess changes in bikeshare use across diverse communities in response to transportation system changes. The
pandemic offers a unique moment to particularly measure changes in use for low socioeconomic status (SES) populations as
historically limited deployments of bikeshare in low-income neighborhoods limit evaluation of key metrics for this population.
For low SES users to realize greater accessibility through bikeshare, they may need to take relatively longer trips, given the
sparse nature of the network in low-income areas and the existing inequitable geography of opportunities in urban environ-
ments in the United States. As such, we measure the effect of the COVID-19 pandemic on average daily bikeshare trip dura-
tions in Philadelphia, PA—the major city with the highest poverty rate in the United States. Through an interrupted time
series approach, we find that the effect of the pandemic on trip duration for all bikeshare users is substantial (approximately
7–12 min increase), positive, and similar across diverse geographic areas. Importantly, these findings are persistent and statisti-
cally significant even when fitting models only on data from predominantly low SES areas of Philadelphia. This change pattern
suggests first that low SES users exhibit roughly equal propensity as the general population to take longer trips, and second
that bikeshare can provide a resilient, equitable travel mode.
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Bikeshare programs, as a spatially dispersed and rela-
tively affordable travel mode, hold potential to generate
substantial gains in accessibility across the population (1,
2). Yet, the siting of bikeshare stations has historically
been centered on design variables including population
density, income, and, for locations with existing bike-
share infrastructure, bikeshare ridership (3). Though cer-
tain metropolitan areas have begun to use equity criteria
to cite new stations (4–6), the predominance of existing
metrics place neighborhoods of lower socioeconomic sta-
tus (SES) at a disadvantage for the allocation of new ser-
vice. Related to this imbalance of supply, bikeshare
users—though they may be more diverse than other
cyclists across the metrics of gender (7), income, and
race/ethnicity—still remain more white, higher income,
and male than the general population (8). Furthermore,

when bikeshare stations are present in lower income
areas, high minority areas, or both, they appear to gener-
ate fewer trips (9). However, it is unclear if those from
low SES backgrounds prefer to travel on other modes,
or if they would choose to utilize a bikeshare system if it
were more accessible and provided better access to

1Department of City and Regional Planning, University of Pennsylvania,

Philadelphia, PA
2School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
3School of Engineering and Applied Science, University of Pennsylvania,

Philadelphia, PA
4Department of City and Regional Planning, Department of Electrical and

Systems Engineering, University of Pennsylvania, Philadelphia, PA

Corresponding Author:

Joshua H. Davidson, jdavids@design.upenn.edu

us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/03611981221098390
https://journals.sagepub.com/home/trr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F03611981221098390&domain=pdf&date_stamp=2022-06-10


opportunities. The barriers to the use of bikeshare for
low SES populations is well documented, and include
issues related to station proximity, means of payment,
and gaps in the network leading to prohibitively long
travel times (1, 10, 11). Given the predominate policy
frameworks that prioritize siting docking stations outside
low SES areas, there are limited examples that allow for
observational data that can explore low SES users’ pro-
pensity to change their use of bikeshare.

The COVID-19 pandemic did not bring about an
instantaneous increase in bikeshare supply, but it did
fundamentally change the transportation environment,
for example in decreased transit frequencies (12) and
‘‘pop-up’’ road closures for active travel modes (13). In
the absence of ample policy experiments from bikeshare
operators, the COVID-19 pandemic provides a ‘‘natural
experiment’’ under which we can evaluate changes in
bikeshare use in communities with low SES, which pro-
vides signals of propensities for use. To do so, we must
isolate the characteristics of bikeshare before and during
the COVID-19 pandemic and statistically evaluate if the
onset of the pandemic changed the trends seen in these
characteristics. While ‘‘check outs’’—trip frequency—
might be an obvious variable to gauge the magnitude of
use, a more nuanced analysis that provides insight into
the accessibility gains afforded by bikeshare can be
achieved by evaluating changes in trip duration (14). For
low SES users to realize greater accessibility through
bikeshare, they may need to take longer trips, given the
sparse nature of the network in low-income areas and
the existing inequitable geography of opportunities in
urban environments (15).

In the following analysis we seek to investigate how
the dynamics of the COVID-19 pandemic reflect in
changes to bikeshare trip durations across varied socioe-
conomic and demographic areas, what these changes
indicate for propensity for use, and the ways these
changes exhibit bikeshare’s capacity to provide resilience
and redundancy for diverse users. We measure the effect
of the onset of the COVID-19 pandemic on average daily
bikeshare trip durations for the Indego bikeshare system
in Philadelphia across neighborhoods to capture a range
of low, medium, and high SES bikeshare users.
Philadelphia features both a relatively long-running bike-
share system, and a highly racially and economically seg-
regated geography (16–22), where low income, high
minority neighborhoods are often concentrated and spa-
tially distant from opportunities.

Qian and Niemeier (23) pointedly argue that, ‘‘For
bikeshare systems to prove useful to disadvantaged
communities, the way in which they are designed must
shift from operationalizing systems that target certain
demographics to designing systems that target gaps in
accessibility.’’ Methodologically, the interruptions in the

pandemic offer an opportunity to define new inputs,
beyond existing variables such as ridership or those
derived from surveys or demand models (24, 25), to
inform the allocation of bikeshare infrastructure that
supports broad-based accessibility gains. If during the
pandemic we find that trip durations for low SES bike-
share users increased, this population exhibits high pro-
pensity to change use patterns, and could realize greater
accessibility through this mode. Moreover, if trip dura-
tions for low SES users went up in a way that mirrors
trends for the general population, such findings imply
that bikeshare provided a necessary, redundant, and
alternative travel mode during the pandemic; not only
did the bikeshare system provide a mobility option, but
also it provided resilience. Policy could build on these
positive examples under initiatives that build more
opportunities for using bikeshare services, such as com-
prehensive geographic expansions of bikeshare systems
including to outlying, low SES areas.

To derive new accessibility inputs, we utilize an inter-
rupted time series approach that measures trip durations
over time and isolates the effect of the pandemic on the
change in trip duration, while controlling for seasonal
variation. This effect is first measured at the system-wide
level to determine whether average trip durations change
substantially during the COVID-19 period. Next, time-
series models are fit on subsets of the data based on the
geographic location of origin docking stations. We group
the data based on the convenient political geography of
Philadelphia’s planning districts, which describe highly
varied socio-economic and demographic areas of the city.
We find that the effect of the COVID-19 pandemic on
trip duration is substantial and positive both at the sys-
tem level and across all the planning districts analyzed.
Our findings suggest that, first, users of low SES substan-
tially increased their trip durations during the pandemic,
and, second, that all populations, regardless of SES,
increased bikeshare travel times in much the same way.
Together, these findings suggest two important lessons
for bikeshare policy. First, low SES users exhibit propen-
sities for longer travel times that may be necessary to
realize accessibility gains through bikeshare; this suggests
that interventions in more outlying geographic areas may
yield positive benefits for users previously excluded from
the system. Second, bikeshare provided broad-based ben-
efits to a range of population groups during the crisis;
this signals that bikeshare provided a level of necessary
system redundancy and transport resiliency during the
pandemic. Regardless of the rationale for trip making—
recreation, commuting, or otherwise—users across the
population spectrum dramatically increased use patterns,
which highlights the important role for bikeshare as part
of a large suite of mobility options. Planners can build
on this example by broadly expanding the opportunities
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to utilize bikeshare services across diverse geographies
and build on the positive energy generated around bike-
share use during the pandemic.

Relevant Literature

The growth and development of bikeshare systems is well
documented in the literature (1, 2, 26). Scholars and pol-
icy makers have devoted specific energy to learn from
underserved populations (10) and develop programs to
diversify the population of bikeshare users (27). Though
national surveys have found that low-income persons are
disproportionately represented among cycling commu-
ters (28), and some scholars have found that low-income
status positively predicts utilitarian cycling (29, 30), the
characteristics of bikeshare users have trended toward
the upper ends of the socioeconomic spectrum (10, 31–
33). Previous research on diversity and equity among
bikeshare users has analyzed the ways that bikeshare sys-
tem operators and public agencies can promote use (34)
through initiatives that include: revisions to payment sys-
tems that previously excluded the unbanked (35),
expanded hours of operation (36), and electrification of
segments of the bike fleet (37). These policy interventions
have only had, at best, mixed results at growing bike-
share use among low income populations, minority
populations, or both (38). Of particular interest to this
study, scholars have highlighted the need to equitably
expand the spatial distribution of bicycle docking sta-
tions to lower-income, high minority populations, and/
or otherwise disadvantaged areas (39). In studies in
Canada (40) and Chicago (41), bikeshare stations are
underrepresented in areas that are both low income and
feature high minority populations. These studies suggest
that there is a generally inequitable spatial distribution
of bikeshare stations and that it is necessary, at least
when using equity criteria (5, 42, 43), to orient the spa-
tial allocation of bikeshare infrastructure toward pro-
moting greater access as opposed to strictly increased
ridership among already predominant higher SES user
groups (23).

Following on the inequitable spatial distribution of
bikeshare infrastructure, it is clear that not all of the pop-
ulation has access to the mobility and resiliency bike-
share can theoretically provide. The Federal Highway
Administration explicitly calls for redundancy as a key
element of building transport system resiliency (44), and
bikeshare can increasingly be seen as one element of a
necessarily redundant system. The primary area where
scholars have highlighted this capacity for bikeshare to
provide redundancy is during transit closures, when users
do not have access to a major travel model and must uti-
lize alternatives for their daily travel. In studies of two
London tube strikes (45, 46) and multiple rail closures

caused by major track repairs in Washington, D.C. (47,
48), scholars have found that bikeshare use increased
during these interruptions, especially nearby subway sta-
tions, highlighting that bikeshare provides an important
and used option that builds redundancy and resiliency in
the transport system during major system interruptions.
The massive disruptions posed to all mobility systems by
the COVID-19 pandemic, with bicycling no exception
(49), can yield new findings on the ways bikeshare sys-
tems provide redundancy across the population during
crisis moments.

Bicycle use overall has generally increased during the
pandemic, though the magnitude of this growth has dif-
fered across countries and between localities in the
United States (49). Bikeshare specifically has exhibited
more divergent patterns of use during the pandemic.
After the first lockdown period in the United States from
roughly late March to May 2020, during which time
bikeshare use tended to decrease dramatically (50), many
bikeshare systems saw use rebound fully, or even exceed
2019 levels (51–53). Some systems also saw trip durations
increase substantially in this ‘‘rebound’’ period (50).
Philadelphia, where we draw data for this study, saw
both substantial increases in bicycling overall (54), as
well as dramatic increases in bikeshare use during the
pandemic, as compared to the previous year (55).

The extant literature is mixed on the ways bikeshare
allowed for broad-based use across population groups
during the pandemic. Hu et al. (56) find the areas of
Chicago with a larger white population exhibit dam-
pened ‘‘rebound’’ effects around bike-share use such that
they utilize bikeshare at lower rates than the rest of the
city after the peak ‘‘lock down’’ period. This finding sug-
gests that non-white areas of Chicago may have been
more dependent on bikeshare for mobility during the
pandemic. In contrast, Nguemeni Tiako and Stokes (57)
discuss the issues in the equity-oriented experiments
bikeshare operators initiated during the pandemic, par-
ticularly how price-based initiatives are limited by the
existing geography of bikeshare stations. These studies
suggest that bikeshare can provide a resilient mode of
transport during crisis periods (52, 56), but the efficacy
of the existing system may be limited in its reach to
diverse users.

Research Design

In this paper we utilize origin-destination data from
Philadelphia’s Indego bikeshare system and a series of
time-series models fit at the system and planning district
level to measure the effect of the COVID-19 pandemic
on average daily trip durations. Trip duration is specifi-
cally highlighted as this metric can approximate the pro-
pensity to take longer trips that may be necessary to yield
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accessibility gains for socially excluded (58, 59) popula-
tions. Administratively collected data from ‘‘docked’’
bikeshare systems that utilize stations where users check
in and out bicycles (2) generally provide two key indica-
tors: trip frequency and trip duration. Frequency can be
understood at the origin level as trip generation or at the
destination level as attraction, but both describe the mag-
nitude of use across space within a given system.
Duration measures the intensity of use; in contrast to the
number of trips generated, duration describes how much
on average, by way of time in travel, a given user utilized
the system’s service. By specifying the same time series
models across multiple well-established socio-economi-
cally and demographically diverse geographies, we can
measure how socio-economic and demographic context
may, or may not, yield different coefficients when regres-
sing trip duration on indicator and interaction terms for
the pandemic time period. If the coefficients’ sign and
magnitude are roughly constant, or at least positive and
meaningful across diverse districts, this would suggest
that bikeshare provided the assets of resilient mobility
more widely and/or uniformly across diverse populations
in the pandemic. This then would suggest that bikeshare
has a capacity to provide social resilience that can be
built on in the ‘‘post-pandemic’’ period.

Philadelphia provides a strong case-study for this
analysis for four reasons: 1) the Indego system is well
established and long running, having launched in 2016,
meaning there is ample and publicly available data to
define a time-series analysis; 2) Philadelphia exhibits a
diverse population that also features substantive socio-
economic and racial segregation such that there is dra-
matic variation in the population even at high level geo-
graphies like planning districts; 3) Indego has from the
outset sought to prioritize equity in its programmatic
structure and is an anchor member of the Better
Bikeshare Partnership (27), and is currently embarking
on an equity-oriented system expansion; and 4) The City
of Philadelphia issued a clear ‘‘stay-at-home’’ order on
March 15, 2020, which serves to define the beginning of
the pandemic period in the time series. Together these
features determine both the data framework and policy
applications that suggest the importance of applying
our research question and design to the Philadelphia
example.

Data Preparation

Bikeshare ridership data and station information was
obtained from the Indego trip database consisting of trip
durations, station origin, and station destination for all
trip-level itineraries in January 2016, when the Indego
system began service, through September 2021, the most
recently released data. Philadelphia currently features

only ‘‘docked’’ bikeshare bicycles. The Indego system
does not publicly provide any background data on its
users beyond whether they hold a subscription and the
type of subscription. Therefore, we utilize aggregate U.S.
Census data for areas containing bikeshare stations to
describe socioeconomic and demographic characteristics
of locations that feature bikeshare service. This approach
follows on robust examples in the literature that utilize
census data to proxy for unknown characteristics of bike-
share users (41, 60, 61). These aggregate variables pro-
vide context for the social landscape in which the Indego
bikeshare system currently operates in Philadelphia and
describe differences between the various planning dis-
tricts in the city. Census data is derived from the 2019 5-
year American Community Survey and analyzed at the
census tract level. Additionally, the publicly available
Philadelphia planning district geographic boundaries are
employed to aggregate bikeshare trips and socioeco-
nomic and demographic variables to the district level.
Key variables and definitions are provided in Table 1.

Philadelphia’s planning districts feature highly differ-
entiated socio-economic and demographic characteristics
(Table 2; Figure 1b). For example, the census tracts
within the Central district feature average median house-
hold incomes more than $30,000 higher than the city
average and more than twice that of many of the districts
that have bikeshare stations. The percent of non-white
population varies even more dramatically, such that the
West district nears 100% of the population non-white,
while more than half the population in the South district
is white. The range in variation of these key metrics
across planning districts makes this geography a useful
unit of analysis through which to measure the varied
equity impacts of the pandemic on bikeshare use.

Each bikeshare trip’s origin station is assigned to the
census tract and planning district in which it is located.
The spatial distribution of bikeshare stations across
Philadelphia’s census tracts and planning districts is pre-
sented in Figure 1. Like studies highlighted in the litera-
ture review, bikeshare stations are unevenly spatially
distributed across Philadelphia. Large areas of the city
feature no stations, while, even among the areas covered,
docking stations cluster toward areas that feature higher
incomes and lower minority populations, compared to
the city average. Nearly 50% of stations are located
in the high income/low minority Central district (see
Table 3). Philadelphia’s downtown (Central district) and
university areas (which concentrate in the University
Southwest, Central, and Lower North districts) feature
substantial residential land uses nearby to education,
medical, and commercial centers (62, 63), such that resi-
dence area data as collected from the Census (Table 2)
can reasonably approximate the characteristics of bike-
share users utilizing stations in these areas. While it
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appears that Indego is present across a wide range of
planning districts (Figure 1b), this is to some extent
skewed by districts like the River Wards that are quite
large, but only feature one station at the edge of the dis-
trict closest to the downtown area.

Trip durations are aggregated to the daily average for
both the system and planning district level to create a
longitudinal data set. Trip durations in the 95th percen-
tile or those less than or equal to 1 min are removed as
outliers. The average trip duration was roughly 15 min
across the time series for the full system, while slightly
lower in the pre-pandemic period (13.93 min), and higher
(17 min) during the pandemic period (differences in
means by treatment statistically significant at p\ .001).

Methods

The use of ‘‘natural experiments,’’ like the beginning of
the pandemic, to measure changes in behavior is well
documented in the literature on quasi-experimental
research designs (64) and reflects how researchers can
take advantage of exogenous events to isolate causal fac-
tors (65, 66). One example of such an approach is the
regression ‘‘discontinuity’’ framework using time-series
data, often referred to an ‘‘interrupted time series’’ (67).

We specify a time-series model that utilizes ordinary
least squares (OLS) to regress trip duration on indicator

and interaction terms for the COVID-19period, while
controlling for seasonality. Though OLS models can be
susceptible to autocorrelation when using time-series
data, as we discuss in the results, the residuals in our final
OLS model are generally random over time and when
plotted against fitted values; therefore, we do not make
any revisions to the OLS structure. The model in this
paper is defined such that:

TripDuration= f Time,Treatment,Time � Treatment,Monthð Þ
ð1Þ

where Trip Duration is the average daily trip duration
measured across all origin bikeshare stations in the geo-
graphy of interest; Time is a continuous variable indicat-
ing days; Treatment an indicator term equal to ‘‘1’’
for all days that fall on or after March 15, 2020;
Time3Treatment is the interaction term between time
and the pandemic indicator; and Month is a series of
indicator variables measuring the month in which the
daily average trip duration was defined, meant to control
for seasonal variation. We center Time at ‘‘0’’ for March
15, 2020 for ease of interpretation of the intercept and
the pandemic indicator and interaction terms. The
month of May is reserved as the comparison case for sea-
sonality in the models as this month roughly describes
the most ideal cycling conditions, at least weather wise,

Table 1. Variables and Definitions

Variable Definition Units

Trip level variables
Origin Bikeshare station from which the bicycle was

checked out
Longitude/latitude degrees

Destination Bikeshare station at which the bicycle was returned Longitude/latitude degrees
Trip duration Time elapsed from check out at origin station to

check in at destination station
Minutes

Time-series variables
Time Day and year combination for which trip durations

are aggregated
Day + Year

Treatment Indicator variable defining observations in the
COVID-19 period

Binary (1 = Time ø March 15, 2020 /
0 = Time\March 15, 2020)

Month Month in which trip occurred Month
Population context variables (defined for origin station location)

Income Median household income (2019 $) Census tract
Unemployment Percent of working age population (N16 years of

age) unemployed
Census tract

Non-white Percent of population non-white Census tract
Population density Persons/square mile Census tract
Car access Percent of households without access to an

automobile
Census tract

Bachelor’s degree Percent of population with a bachelor’s degree or
higher

Census tract

Planning district Geographic unit of analysis employed by the
Philadelphia City Planning Commission to conduct
planning surveys, analyses, and interventions

District

Davidson et al 5



in Philadelphia as it is generally neither too hot/humid
nor too cold. Time-series regression models are fit on
data defined for the entire Indego system, as well for
each planning district in which there are bikeshare sta-
tions. All analyses are conducted using the open-source
statistical software R (68).

Results

The time series for average bikeshare trip durations at
the system and planning district levels are presented in
Figure 2. Though we lack data on the exact demographic
and socio-economic character of bikeshare users before
and during the pandemic, there are clear differences in
use, as measured by trip duration, across planning dis-
tricts. As discussed earlier, these planning districts are
quite different from one another in SES, but tend to
reflect consistent population characteristics within a
given district. While the general shape of the time series
trend is similar across planning districts, and parallels
the trend for the system overall, there are substantial dif-
ferences across districts in the observed range of trip
duration values. This is presented in the varied trip dura-
tion values (on the y-axis) across the district level plots in
Figure 2b, where, for example, the maximum average
duration in the Lower South district hovers around
60min, compared to 30min in the Lower North district.
Regardless, there is a clear and dramatic increase in trip
duration at the system level around the onset of the
COVID-19 pandemic (Figure 2a). There appears to be
no initial ‘‘decline’’ or rebound in the average trip dura-
tions in Philadelphia around the start of the pandemic.
Instead, bikeshare trip times appear to have steadily and
dramatically increased at the start of the pandemic—
with growth tapering off only midway through the sum-
mer of 2020. Trip durations appear to have returned
roughly to the pre-COVID-19 pattern in 2021.

Though there is variation in the trend, this same gen-
eral pattern of substantive increases in trip durations
during the pandemic holds across the time-series patterns
defined for each planning district (Figure 2b). When
aggregated to the district level, there is far greater varia-
bility and volatility in average trip durations in certain
districts like West Park compared to others like the
South district that are more clustered. Planning districts
that feature a truncated time series reflect that there were
no bikeshare stations in those districts at that time
period.

These differences in the range, variability, and volati-
lity in the time-series patterns across districts can be
largely explained by three factors: (1) the number of sta-
tions in each planning district; (2) the distance from sta-
tions in a given planning district to other stations in the
system; and (3) the presence of ‘‘Round Trip’’ trips. TheT
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limited number of stations in more outlying districts (see
Figure 1 and Table 3) are more susceptible to swings in
average values given that there are generally fewer obser-
vations from which to draw measures of central ten-
dency. In addition, these same outlying districts have
limited opportunities for mid-range trip durations; com-
pared to the Central district where the abundance of sta-
tions means that trip times can take on a more
continuous range of values based on destination; in out-
lying districts, gaps in the spatial distribution of docking
stations mean ‘‘one-way’’ trips can either cover short or
long durations. Finally, the presence of ‘‘Round Trip’’
trips—where a user checks out and returns a bicycle at

the same docking station—may be further driving the
volatility in certain districts. For example, the West Park
bikeshare stations are located near to Martin Luther
King Drive, the primary example in Philadelphia where
roadways were closed to automobiles for pedestrian and
cyclists’ use (13) during the pandemic (69). This roadway
has seen great use in the pandemic and proximity to such
areas may yield longer, round-trip, recreational tours.

Recall that the planning districts exhibit quite differ-
ent socioeconomic and demographic contexts (Table 2).
Across these varied social contexts, the difference in trip
durations before and during the pandemic ranges from
around 2 to 6.5 min in a given planning district (all dif-
ferences in means significant at p\ .001), compared to a
difference of about 3 min at the system-level (p\ .001).
The shape of the distributions of trip durations differs
between districts and compared to the system level
(Figure 3); nonetheless, as seen in both the time-series
and ‘‘pre-COVID-19/COVID-19’’ analyses of trip dura-
tion, the pandemic yields positive and statistically signifi-
cant increases in trip duration across each of the diverse
geographic areas.

For all months, average trip durations were higher
during the COVID-19 period as compared to the same
month before the pandemic (Figure 4). These differences
are most dramatic in the spring and summer months,
suggesting that an initial wave of much longer trips

Figure 1. Indego Bikeshare station locations across Philadelphia: (a) census tracts and (b) planning districts.
Note: Tracts and planning districts with bikeshare stations highlighted.

Table 3. Distribution of Bikeshare Stations Across Planning
Districts

Planning district
Bikeshare

stations (n)
Bikeshare

stations (%)

Central 84 49.70
University—Southwest 23 13.61
South 20 11.83
Lower North 27 15.98
West 7 4.14
West Park 3 1.78
River Wards 1 0.59
Lower South 4 2.37

Davidson et al 7



dampened as both the weather became less hospitable to
cycling and other transportation options like transit
returned to more regular schedules. The magnitude of
the difference in trip durations across the same month
before and during the pandemic range from a minimum
of less than 1 min in February to around 5 min in May
(all differences in means significant at p\ .01).

The time-series regression models reinforce the find-
ings of the ‘‘pre COVID-19/COVID-19’’ analyses and
add nuance as to the effect of the pandemic on trip dura-
tions. Table 4 provides four models fit on data defined at
the system level. Model 1 regresses average trip duration
only on time, Model 2 introduces month fixed effects to
control for seasonality, Model 3 includes the indicator
term for the COVID-19 period, and Model 4, the final
model, adds the interaction term for the indicator term
and time. This iterative model building approach allows
for a close analysis of the introduction of new covariates
on coefficient sign and magnitude and builds on previous
model building approaches in the literature (20). The
residuals for Model 4, our final model, appear to be
mostly random when plotted against time (Figure 5a)
and against the fitted values (Figure 5b), which suggests

no substantive autocorrelation that would require model
specification corrections; we therefore directly interpret
and discuss the OLS results.

The intercept/constant values across each model
reflect the trip duration on March 15, 2020 given the
other variables in the model. For example, in Model 3,
the intercept is at 14.91 min and the binary indicator for
the COVID-19 period shifts this intercept upwards by
roughly 3.45 min. Also, note that the direct effect of time
on trip duration is very small and changes signs across
model iterations. This suggests that, if not for the pan-
demic, trip durations are roughly constant when account-
ing for seasonality.

The coefficients in Model 4 suggest a substantial and
positive direct effect of the pandemic indicator on daily
average trip durations of approximately 7.46 min. This
suggests there is a dramatic effect of the pandemic on
bikeshare use, at least in the immediate period after the
onset of the public health crisis. However, the interaction
term between time and treatment features a negative sign
and is also statistically significant. The negative sign on
the interaction term suggests a return to more normal
bikeshare use during later periods of the pandemic; put

Figure 2. Time series for average daily bikeshare trip duration/day by treatment period for: (a) the system level and (b) by planning
district.
Note: y-axis range varies across planning districts. Seven day rolling averages presented.
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differently, there do not appear to be clear sustained pos-
itive effects. We discuss possible implications of the inter-
action term in the conclusion. Though not a primary
finding for this research, the sign and significance for the
month fixed effect terms suggest that users took longer
bikeshare trips in the months of May and June, which
adds further examples to the literature that describes
how bikeshare use increases during periods of more plea-
sant weather (70, 71).

The findings for our final model specified using data
from each of the eight planning districts suggests that the
effect of the pandemic is similar across these quite differ-
ent geographic areas and mirrors the model results at the
system level (Table 5). Recall, these planning districts
reflect varied social characteristics (Table 2). Our

approach of fitting separate models within each district,
so as to account for these differences in socio-economic
and demographic features, builds on multiple examples
in the transportation field that fit the same model across
multiple subgroups in the data (72, 73).

The coefficient on the treatment variable defining the
start of the pandemic is positive and statistically signifi-
cant across all eight models and ranges from roughly
5 min (West Park) to nearly 12.5 min (Lower South).
Similarly, the interaction term is negative and statisti-
cally significant across all models. Given both the socioe-
conomic and demographic diversity of these districts,
and the range in variability and volatility across the time
series patterns when defined at the district level, these
stable and constant effects in the regression models

Figure 3. Density distribution of average daily bikeshare trip duration by treatment period for: (a) the system level and (b) by planning
district.
Note: x-axis varies across subsets.

Figure 4. Boxplots that describe average trip durations for the system level by treatment period across months.

Davidson et al 9



suggest a strong and consistent trend. Regardless of the
population surrounding origin stations, and the variation

in day-to-day averages, trip times went up in a substan-
tial fashion during the pandemic period.

Conclusion

The findings suggest that bikeshare trip durations
increased during the pandemic period across highly var-
ied socioeconomic and demographic geographies. Based
on the results for models fit in planning districts typified
by low SES populations, we find that low SES users
exhibit high propensities to increase their use of bike-
share and could reasonably realize accessibility gains that
may necessitate longer travel times; programmatic sys-
tem expansions in more distant geographic areas could
therefore yield increased benefits for users formerly
located beyond the reach of the system. We also find that
diverse populations exhibit similar propensities to
increase bikeshare use in the pandemic; users across the
population dramatically increased use, foregrounding
bikeshare as an important option in the larger landscape
of mobility options. The results of the ‘‘pre COVID-19/
COVID-19’’ analyses and models suggest that bikeshare
systems can provide not only redundancy in times of
mobility interruptions, but also that this capacity can
reach a broad-based constituency and thereby provide
social resilience through greater mobility options. These

Table 4. Time Series Models Results at the System Level

Dependent variable:

Trip duration

(1) (2) (3) (4)

Time 0.001*** (0.0001) 0.001*** (0.0001) 20.001*** (0.0001) 0.0002* (0.0001)
January na 22.974*** (0.251) 22.618*** (0.231) 22.383*** (0.179)
February na 22.760*** (0.257) 22.358*** (0.236) 22.058*** (0.182)
March na 21.871*** (0.251) 21.729*** (0.230) 21.719*** (0.178)
April na 20.662*** (0.253) 20.721*** (0.232) 20.872*** (0.179)
June na 20.357 (0.253) 20.298 (0.232) 20.148 (0.179)
July na 20.827*** (0.251) 20.709*** (0.230) 20.408** (0.178)
August na 21.351*** (0.251) 21.173*** (0.230) 20.718*** (0.178)
September na 21.664*** (0.253) 21.427*** (0.232) 20.821*** (0.180)
October na 22.070*** (0.263) 21.667*** (0.242) 21.772*** (0.187)
November na 22.323*** (0.265) 21.861*** (0.244) 21.886*** (0.189)
December na 22.845*** (0.263) 22.324*** (0.242) 22.267*** (0.187)
Treatment na na 3.452*** (0.173) 7.458*** (0.171)
Time: Treatment na na na 20.017*** (0.0005)
Constant 15.439*** (0.073) 17.005*** (0.182) 14.913*** (0.197) 15.364*** (0.153)
Observations 2,098 2,098 2,098 2,098
R2 0.097 0.223 0.347 0.611
Adjusted R2 0.097 0.218 0.343 0.608
Residual standard error 2.599 (df = 2096) 2.417 (df = 2085) 2.216 (df = 2084) 1.711 (df = 2083)
F statistic 224.995***

(df = 1; 2096)
49.830***

(df = 12; 2085)
85.226***

(df = 13; 2084)
233.653***

(df = 14; 2083)

Note: na = not applicable; df = degrees of freedom; *p\0.1; **p\0.05; ***p\0.01.

Figure 5. Model residuals for final model of trip duration at the
system level plotted against: (a) time, and (b) model fitted values.
Note: dashed lines reflect 6 two standard deviations in residual values.
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findings can inform bikeshare policy in at least the fol-
lowing three ways:

1. Build on current use. The increased trip durations
are an inspiring impetus for bikeshare operators
to consider their systems as ‘‘essential’’ mobility
services, demonstrated by the magnitude of
increased use during the pandemic. Though we
hope that interruptions of the magnitude of the
COVID-19 pandemic are rare, our findings make
the case that bikeshare can quite dramatically
absorb and adapt to exogenous circumstances. In
areas with high and low densities of docking sta-
tions and different population characteristics, trip
durations all increased substantially during the
pandemic, signaling a general trend that bike-
share use gravitated toward a longer mean.
Bikeshare system operators may benefit by con-
ducting qualitative interviews with users as to
what drove the change in trip duration during the
pandemic and utilize these lessons to support pol-
icies that expand service (new stations), access to
opportunities (electrification), or both.

2. Link with new, safe physical infrastructure.
Consider the road closure of Martin Luther King
Drive in Philadelphia. This 4.5-mile roadway pre-
viously served primarily as an auxiliary road to
Interstate-76, and was used mo by motorists, often
at unsafe speeds. With the closure to automobiles,
this roadway immediately became a linear park,
serving a largely low-income and non-white geo-
graphic area of Philadelphia. We believe part of
the increase in trip durations, particularly in the
West Park district, may be in part a result of such
interventions. Further analysis of bikeshare use
nearby ‘‘pop up’’ (13) closures and other safety
interventions in the roadway infrastructure can
help better understand these linkages.

3. Serve the underserved. Finally, our findings sug-
gest that in times of crisis the benefits of bikeshare
are widely distributed across diverse populations.
Trip times increased around the pandemic in
diverse socioeconomic and demographic geo-
graphic areas of Philadelphia. While much litera-
ture has shed light on the disproportionately
white, upper income, and male background of the
standard bikeshare user, these findings from the
pandemic period suggest a different narrative of
similar change in bikeshare use patterns across
different population groups. These findings can
serve as an impetus to grow the reach of bikeshare
networks into previously underserved geographic
areas. Philadelphia’s Indego system has already
taken strong steps in this direction through the

recent system expansions into South and West
Philadelphia (74).

While our findings on the social resilience capacity of
bikeshare are robust across models, there are some lim-
itations to our data and analytic approach. First, the
most recently available data was collected amidst the
ongoing pandemic. The lack of true post-COVID-19
data does not allow for clear statistical inference on sus-
tained changes in trip durations following the pandemic.
This raises issues, particularly with the interpretation of
the interaction term in our models. If, after including
post-COVID-19 periods of data, the interaction term is
still negative and statistically significant, this would sug-
gest an initial increase, but then a return to previous
average trip durations. However, if the interaction term
is no longer significant, or even positive, following the
inclusion of post-COVID-19 data, this might suggest a
sustained effect following the pandemic that features
increases in travel times, yielding different policy lessons.
We are eager to incorporate more recent periods of data
to investigate these questions. Second, individual-level
demographic and socioeconomic data is not publicly
provided by Indego and features limited response rates
even in internal surveys conducted by Indego that asked
about such background characteristics (personal commu-
nication with Indego administrators, March 2020). Our
assumptions about the equity implications of our analy-
ses are thus based on context variables from geographies
nearby to origin stations. However, these social indica-
tors may not linearly match the characteristics of riders.
Third, the aggregation to planning districts is politically
important and convenient, but also analytically coarse.
In future work it may make sense to instead define typol-
ogies at the more granular tract level, using clustering
approaches based on social indicators (21). Models could
then be fit within clusters to infer different effects (20).
Fourth, and finally, we do not differentiate between utili-
tarian and recreational trips in this analysis. It may be
the case that there are different effects of the pandemic
across trip purposes.

In this paper, we articulate an approach that show-
cases the synthesis of publicly available data, open-
source tools, and a parsimonious modeling structure (75)
that yields new inputs which can help to move the plan-
ning of bikeshare systems away from ‘‘safe bets’’ in
already served areas, toward a more expansive under-
standing of where equitable gains can be made through
greater service provision. Bikeshare policymakers and
operators will benefit by learning from the examples of
use during the pandemic and should work to expand the
capacity of bikeshare to provide broad-based accessibil-
ity, both in times of normalcy and crisis in the months
and years to come.
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