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Introduction

Separated and safe bicycle facilities—such as bike lanes, 
protected bike lanes, or segregated bike paths (Furth 2021)—
theoretically have the capacity to generate increased cycling 
in the population that can, in turn, yield positive outcomes 
for multiple priority areas in urban and transportation plan-
ning (Ryerson et al. 2021). Scholars have highlighted how 
new cyclist-serving infrastructure is associated with greater 
physical activity and theoretically positive health outcomes 
(Crane et al. 2017), reduced air pollution (Schmitz et al. 
2021; Whitehurst et al. 2021), higher levels of utilitarian 
cycling (Heesch et al. 2016; Winters et al. 2007), and greater 
gender diversity among cyclists (Garrard, Handy, and Dill 
2012). However, far less is known about the causal impact of 
safe infrastructure on cycling. The spatio-temporal nature of 
infrastructure investments makes measuring their impact on 
non-motorized transport modes quite complicated. For 
example, implementing a new bike lane can take months, so 
measuring changes in cycling requires a wide temporal win-
dow for analysis. Additionally, the provisions of that same 
bike line may be drawing users from nearby roadways 
(Parker et al. 2013; Parker, Gustat, and Rice 2011), thus 
requiring a broad spatial frame of reference to measure its 
impact accurately. Therefore, much of the scholarship that 

measures these impacts yield correlational rather than causal 
findings (Pucher, Dill, and Handy 2010).

The advent of the COVID-19 pandemic has radically 
shifted this landscape, in that the totality of the transportation 
system shifted essentially overnight (Bagdatli and Ipek 2022; 
Habib and Anik 2023; Haghani et al. 2024). This moment 
affords scholars a unique “natural experiment” under which 
to measure causal impacts across diverse mobility environ-
ments including public transit (Liu and Zhang 2023; Niu and 
Zhang 2023), walking (Angel et al. 2023), and driving 
(Katrakazas et al. 2021). The policy environment during the 
peak of the pandemic especially allowed for experimentation 
in terms of infrastructure provision for cyclists that were 
regularly deemed impossible during “normal” operations, 
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including new bike lanes, safe streets, and even the closure 
of roadways to automobiles (Buehler and Pucher 2024).

In the following analysis, we use longitudinal, origin-des-
tination, bikeshare data from the Indego system in 
Philadelphia, PA, administratively collected for every trip 
starting in 2016, to employ differences-in-differences mod-
els (DID) (Angrist and Pischke 2009) that measure the 
impact of a major provisional road closure during the pan-
demic on bikeshare trip durations. Indego is a docked bike-
share system, where bicycles are checked in and out from 
fixed locations (Fishman 2020). We therefore define treat-
ment and control groups based on the spatial proximity of 
origin bikeshare stations to the road closure of interest, 
Martin Luther King Drive (MLK).

We employ duration as the dependent variable in this 
analysis for two key reasons: (a) longer trips are associated 
with greater physical activity (Fishman 2016), and can 
thereby better match planning priorities around promoting 
public health (Koglin and Rye 2014; McAndrews and Marcus 
2014; Moudon and Lee 2003; Zahran et al. 2008), and (b) 
longer trip durations can lead to greater access to goods and 
services through bikeshare (J. Wang and Lindsey 2019). 
While the first justification for employing trip duration as the 
outcome variable is relatively location agnostic—more phys-
ical activity yields positive public health outcomes in most 
environments—the second justification, around accessibility 
to bikeshare and accessibility gains from the bikeshare sys-
tem (Desjardins, Higgins, and Páez 2022), is more location 
specific to our case study in Philadelphia. In “docked” bike-
share systems like Philadelphia’s, system users can only 
travel between a fixed set of geographic locations where 
check in/check out stations are currently active (Fishman 
2020). Locations where bikeshare stations are concentrated 
and spatially distributed allow users to travel for a wide 
range of durations. In contrast, neighborhoods with sparse 
station implementation mean that users from those areas 
must travel by bike share for greater distances and longer 
times in order to access the nearest bikeshare station. These 
geographic characteristics of docked bikeshare systems sug-
gest that longer travel times can yield greater accessibility 
through bikeshare, particularly for those users who live in 
areas with less dense station distributions (Davidson 2023).

If “exposure” to the provisional MLK road closure is 
associated with an increase in trip durations in the treatment 
group, such that increases go above and beyond the docu-
mented increase at the peak of the pandemic (Davidson et al. 
2022), this would suggest that the provision of high quality 
bicycle facilities is associated with greater cycling trip dura-
tions. Indeed, we find such an “above-and-beyond” effect. 
While all trips that originated from stations in the treatment 
and control groups saw substantial increases in duration at 
the peak of the pandemic, treatment stations in close proxim-
ity to MLK saw a highly significant increase of 2.4 minutes 
compared to control stations. Together, treatment stations 
saw an increase in durations of nearly 25 percent compared 

to pre-pandemic conditions, as compared to 16 percent for 
control stations.

Empirically, infrastructure policies are generally not 
tested using “true” experiments—like a randomized, con-
trolled trial (RCT) in medicine—but rather quasi-experi-
ments (Shadish, Cook, and Campbell 2001) that can yield 
semi-causal inferences. The lack of researcher-designed 
treatment and control groups in infrastructure experiments 
during the pandemic means that the causal chain is not as 
robust as in an RCT but is still “semi”-causal—a stronger 
linkage between cause and effect than that derived from a 
correlation study. Here, we build on the examples in the lit-
erature that infer semi-causal changes in cycling levels dur-
ing the pandemic (Kraus and Koch 2021; Sung 2023; Zhang 
and Fricker 2021) and focus on measuring the impacts of 
provisional infrastructure (Becker et al. 2022; Lovelace et al. 
2020; Rérat, Haldimann, and Widmer 2022). Given our con-
servative estimation of the DID model and definition of the 
control group, these findings are likely underestimates of the 
infrastructure effect. Our findings suggest that well-defined, 
safe, and substantial cyclist-serving infrastructure can sup-
port an overall increase in cycling durations in the popula-
tion, yielding positive outcomes across multiple urban 
planning dimensions. We now move to a discussion of the 
key literature that frames our analysis.

Literature Review

We highlight three key bodies of literature that situate the 
methodological and analytic framework in this paper. First, 
we discuss examples in the transportation planning literature 
that measure the impact of new infrastructure on cycling 
(across multiple outcome metrics), as necessary background 
to the unique experiments conducted during the Covid-19 
period. Second, we review the extant literature on the impacts 
of the Covid-19 pandemic broadly on levels on cycling. 
Finally, we address the literature that specifically investi-
gates the ways that provisional infrastructure instituted dur-
ing the pandemic impacted bikeshare and cycling use patterns 
more generally. Throughout, we highlight the ways that the 
extant literature has generated causal or semi-causal infer-
ences for the relationship between infrastructure and cycling. 
We conclude by highlighting gaps in the literature as framing 
for the structure of our research design.

Infrastructure Impacts in Bicycle Planning 
Research Pre-Covid-19

In order to measure the impact of a provisional road closure 
to automobiles during the pandemic on cycling trip dura-
tions, we first address two core behavioral models (Aldred 
2013) that link new infrastructure with increased cycling in 
the pre-pandemic literature. First, we highlight the user pref-
erences and empirical justifications for separated bicycles 
facilities, those removed from automobile traffic, and 



Davidson et al. 3

second, how cyclists will use such infrastructure based on 
their preferences, even when diverting from a spatially (dis-
tance) or temporally optimal route choice. The arguments in 
favor of separated bicycle facilities are well documented in 
the literature (Furth 2012; Pucher and Buehler 2008; Pucher, 
Buehler, and Seinen 2011) and the benefits of these facilities 
have been supported across multiple analytic frameworks. 
Foremost, studies of stated-responses from current and pro-
spective cyclists exhibit nearly uniform convergence around 
preference for separated facilities, such as bike paths or pro-
tected bike lanes, away from automobiles (Aldred et al. 
2017; Monsere, McNeil, and Sanders 2020; Sanders 2016). 
In addition, the behavioral literature on road safety for 
cyclists increasingly suggests that separated facilities are 
associated with lower rates of crashes and that when such 
crashes do occur, they are less harmful (P. Chen 2015; L. 
Chen et al. 2012; Cicchino et al. 2019; Sundstrom, Quinn, 
and Weld 2019). Given the users’ preferences for separated 
facilities and the increased safety these facilities offer, we 
can expect that cyclists are more likely to use these facilities, 
rather than shared roadways. Indeed, multiple studies using 
GPS data have documented how cyclists will divert from the 
spatially/temporally optimal route choice, in order to use 
separated facilities (Broach, Dill, and Gliebe 2012; Menghini 
et al. 2010; Park and Akar 2019; Pritchard, Bucher, and 
Frøyen 2019; Winters et al. 2010).

While there is a clear preference for separated bicycle 
facilities, as opposed to shared roadways, there is a lack of 
consensus on how the type of separated facilities impacts 
perceptions of and evidence for safer cycling. Stated prefer-
ence studies have shown that users prefer painted bike lanes 
over sharing the roadway but prefer separated bike lanes 
(e.g., with bollards or parked cars) over painted lanes (Foster 
et al. 2015; McNeil, Monsere, and Dill 2015; Smith and 
Sadeghpour 2022). Behavioral studies show that merely 
painting an unprotected bike lane can decrease nearby auto-
mobile users’ speeds, which would then lead to safer cycling 
(LaMondia et al. 2019). However, this hierarchy of safety—
where protected lanes are deemed safer than painted lanes, 
and so on—does not necessarily play out in the empirical 
evidence. Scholars have found that substantial separation, 
like continuous barriers or changes in the grade of the road-
way, is associated with lower crash risks, but that less inten-
sive separation, like lower bollards or parked cars, exhibits 
risks parallel to shared roadways (Cicchino et al. 2020).

Under the conditions described above—for example, 
well-separated bicycle facilities, that are ideally protected—
new infrastructure has the capacity to induce greater levels of 
cycling (Garrard, Rose, and Lo 2008; Hull and O’Holleran 
2014; Pritchard, Bucher, and Frøyen 2019). However, much 
of the extant literature that measures this capacity is correla-
tional in approach, and thus is unable to address whether the 
new infrastructure spurred greater levels of cycling, or only 
spatially reorganized the patterns of existing cyclists. A 
pressing question is whether there is a causal, rather than 

correlational, effect of new cyclist-serving infrastructure on 
levels of cycling (Mölenberg et al. 2019). In two studies on 
the provision of new bike lanes on major thoroughfares in 
New Orleans, LA, Parker and colleagues (Parker et al. 2013; 
Parker, Gustat, and Rice 2011) find signals that new infra-
structure does lead to increased cycling. By observing cyclist 
counts before and after adding a bike lane, the authors find 
that overall rates of cycling increase along roadways that 
experience the “treatment” of adding a bike lane, while “con-
trol” roadways saw either no change or decreases in use. 
These studies leave open the question of whether the bike 
lane street attracted users from other roadways or generated 
new users (Heesch et al. 2016), but do find signals that over-
all rates of cycling increased, at least on the bike lane street, 
even when accounting for dampened rates nearby (Parker 
et al. 2013).

In contrast, Dill and coauthors find no causal effect of the 
addition of a new bicycle boulevard on overall rates of 
cycling, which the authors suggest may be due to the unique 
character of this infrastructure intervention and/or issues in 
the study design (Dill et al. 2014). Song and colleagues 
(Song, Preston, and Ogilvie 2017) address a key question 
that remains from Parker’s studies—whether there is an 
effect of exposure to bicycle facilities on modal shift. Using 
a two-stage panel design around the advent of new active 
transport infrastructure, the authors find that using the new 
infrastructure predicts modal shift away from automobiles to 
cycling or walking. With this background in changes in 
cycling behavior pre-pandemic, we now explore how cycling 
levels changed during the pandemic and survey examples of 
data-driven impact assessments of new cyclist-serving infra-
structure from this time period.

Changes in Levels of Cycling and Bikeshare Use 
during the Covid-19 Pandemic

The literature on cycling during the Covid-19 pandemic is 
increasingly vast and there are a number of review papers 
that summarize these changes (Buehler and Pucher 2021, 
2022, 2024). Rather than attempt to survey the totality of this 
body of work, we focus on changes in levels of cycling, with 
a particular focus on changes in bikeshare use patterns. 
Bicycle usage overall tended to decrease at the start of the 
pandemic but then rebounded dramatically internationally 
(Heydari, Konstantinoudis, and Behsoodi 2021; Nikitas et al. 
2021); this change pattern differed across regions and munic-
ipalities in the United States (Buehler and Pucher 2021, 
2024). Bikeshare use—as measured by either trip generation 
and/or duration—largely decreased at the very outset of the 
pandemic (Padmanabhan et al. 2021) during the United 
States’ first lockdown. However, this was not the case in all 
cities, such as Philadelphia, which saw almost immediate 
increases in use as compared to pre-pandemic periods 
(Davidson et al. 2022). After the initial lockdown in summer 
2020, many bikeshare systems saw use even exceeded 2019 
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levels of use (Padmanabhan et al. 2021; Sung 2023; Tokey 
2020; H. Wang and Noland 2021a, 2021b). In addition, a 
number bikeshare systems in the United States even expanded 
their services during the pandemic either through provision 
of more bicycles, extending the geographic reach of their 
system, or both (Buehler and Pucher 2022).

The Impact of New Infrastructure during the 
Covid-19 Pandemic on Levels of Cycling and 
Bikeshare Use

One of the most dramatic mobility policy experiments dur-
ing the pandemic was safe infrastructure to support cycling. 
Scholars have taken advantage of the near instantaneous pro-
vision of such infrastructure, in order to develop research 
design that measure near-causal impacts of this new infra-
structure on levels of cycling (Lovelace et al. 2020; Younes 
et al. 2023). In case studies of Geneva and Lausanne, Rérat 
and coauthors find that the addition of this provisional infra-
structure led to greater feelings of safety and a higher pro-
pensity to cycle among survey respondents in two low-cycling 
European cities (Rérat, Haldimann, and Widmer 2022). 
Becker and colleagues conduct a parallel analysis in Berlin 
(Becker et al. 2022) and find higher levels of cycling and 
lower exposure to pollutants along pop-up road closures. 
Finally, Kraus and Koch find, across multiple European 
examples, that provisional cycling infrastructure during the 
pandemic spurred higher levels of ridership in nearby areas 
(Kraus and Koch 2021). These studies tend to also find that 
these interventions are warmly received and considered to be 
popular. Underlying the successful provision of road clo-
sures is the unique “policy window” afforded by the pan-
demic, which allowed municipal governments to make 
dramatic changes in rapidly providing new cyclist-serving 
infrastructure (Harris and McCue 2022).

We now move to a discussion of the gaps in these litera-
tures before describing our research design which is struc-
tured to respond to these gaps.

Gaps in the Literature

The studies reviewed here signal that new infrastructure pro-
vision can impact cycling levels but that this impact is con-
text-dependent, whether on the spatial/built environment, 
existing infrastructure, or levels of exposure to the infra-
structure. However, there is a core methodological gap in 
much of the extant literature pre- and post-pandemic that 
measures the impact of infrastructure on levels of cycling. 
The vast majority of studies are correlational and therefore 
unable to determine whether the new infrastructures caused 
increases in use. This gap is grounded in three core issues: 
(1) the cross-sectional nature of much of the literature on 
infrastructure impacts, (2) the generally lengthy time frame 
under which new cycling infrastructure is planned and ulti-
mately engineered in the built environment, and (3) the 

difficulty in crafting true research experiments in cycling 
analyses. The primary issue facing cross-sectional research 
is that such studies generate correlations between infrastruc-
ture and measures of cycling activity but yield limited causal 
inference as there is little knowledge of cycling levels pre (or 
post) intervention. The policy time frame for new infrastruc-
ture only furthers this issue, in that the implementation of 
new facilities can take many years of planning, which makes 
it difficult to determine when to measure changes following 
“exposure” to the infrastructure (Dill et al. 2014). Finally, 
access to the kind of longitudinal data, well-defined treat-
ment and control groups, and criteria to isolate semi-causal 
impacts are difficult to achieve using the observational stud-
ies that typify bicycle planning research (Mölenberg et al. 
2019).

There has been a growing call amongst planning (Lee 
et al. 2022) and transportation scholars (Brathwaite and 
Walker 2018) to orient mobility research toward causal infer-
ence, even in the absence of controlled, experimental designs. 
Given the ethical, monetary, and political complications or 
conducting randomized controlled trials in the fields of plan-
ning and/or transportation, quasi-experiments have been 
increasingly deployed in the pursuit of causal inference 
(Winters et al. 2018). Our work here builds on select studies 
that have used such statistical designs, by taking advantage 
of the unique infrastructure provisions during the pandemic 
to measure changes in levels of cycling (Kraus and Koch 
2021; Sung 2023).

We now move to a discussion of our research design, 
which we orient to fill some of gaps in the existing knowl-
edge on the semi-causal impact of infrastructure on levels 
of cycling. We respond to these gaps in our analysis by spe-
cifically engaging with exposure to provisional infrastruc-
ture, a careful classification of treatment and control 
bikeshare stations that reflect similar built environments, 
and conservative estimation strategies to engage with the 
semi-causal impact of provisional road closures on bike-
share use patterns.

We now explicitly describe this research design before 
operationalizing the design under a specific model using 
bikeshare data.

Research Design

The Covid-19 pandemic offers a unique experimental setup 
in which to conduct quasi-experimental research (Shadish, 
Cook, and Campbell 2001) that remedies many of these 
inferential concerns around causality described above. As 
has been well documented, the pandemic impacted the total-
ity of the transportation environment, with bicycling rates 
seeing a particularly dramatic increase in use during the peak 
of the pandemic (Buehler and Pucher 2022, 2024). 
Furthermore, initiatives meant to provide socially-distant, 
outdoor recreational opportunities, such as “pop-up” road 
closures to automobiles (Becker et al. 2022; Lovelace et al. 
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2020), established safe, cyclist-serving infrastructure almost 
overnight that would otherwise need to follow on years of 
advocacy, planning, and programmatic analysis. The joint 
impact of these two trends during the pandemic in 
Philadelphia—greater bikeshare use, and experiments in 
infrastructure provision—allows for a unique quasi-experi-
mental approach to isolate the impact of new infrastructure 
on rates of cycling. If we assume that metrics of cycling 
uptake—bicycle purchases, trip generation, trip durations, 
and so on—increased during the pandemic, which we know 
they did in our case study area of Philadelphia (Cowan 2021; 
Davidson et al. 2022), we then ask the essential question: did 
these metrics increase at an even greater rate following the 
provisional implementation of new infrastructure?

To construct a quasi-experiment that explores this ques-
tion, we require: (1) longitudinal data, (2) a metric for cycling 
uptake—trip duration, (3) an example of new cyclist-serving 
infrastructure, and (4) clearly defined treatment and control 
groups around exposure to this infrastructure. Together, these 
elements allow us to statistically evaluate if the onset of the 
pandemic plus new infrastructure yielded increased cycling 
trip durations. We now describe the methodological frame-
work—the differences-in-differences model—and data 
inputs—longitudinal bikeshare data that describe individual-
level trip durations—that inform each of these four compo-
nents of our research design.

Methods and Data

The Differences-in-Differences Model

Differences-in-differences (DID) models are a powerful 
econometric tool used to estimate the causal or semi-causal 
effect of a policy intervention by comparing changes in a 
given outcome over time between a treatment group and a 
control group. This methodology hinges on the parallel 
trends assumption, which posits that any pre-existing differ-
ences between the treatment and control groups remain con-
stant over time, ensuring that any observed changes can be 
attributed to the intervention rather than other factors. 
Crucially, this assumption does not imply that the groups are 
identical at baseline, only that their differences, in the 
absence of the intervention, would have followed a parallel 
trajectory over time. This assumption, when satisfied, con-
trols for unobserved, time-varying factors that affect the 
treatment and control groups. DID models effectively 
remove the influence of confounding variables that vary over 
time, thereby strengthening the causal inference. DID mod-
els are chosen for their robustness in estimating causal effects 
in observational studies, especially when randomized con-
trolled trials are infeasible. By leveraging the parallel trends 
assumption and controlling for time-variant confounders, 
DID models offer a rigorous framework for evaluating pol-
icy interventions across diverse planning areas beyond just 
transportation, including vacant land improvements (Heckert 

and Mennis 2012), the formation of service districts (An 
2024), and the impact of the arts on neighborhood change 
metrics (Woronkowicz 2016).

Defining Treatment and Control Groups in Our 
Data

To isolate the semi-causal impact of the closure of MLK on 
bikeshare trip durations, it is necessary to define multiple 
indicator terms under the DID specification that describe the 
time-varying effect of the roadway closure, as well as a treat-
ment and control group that captures the unique impact of 
being “exposed” to the MLK road closure. We define the 
time-varying effect as the period when MLK was fully closed 
to automobiles by the City of Philadelphia between March 
20, 2020, and August 3, 2021.

Defining a treatment and control group to measure the 
impact of MLK’s closure is more complex. In many cities 
during the pandemic, multiple provisional infrastructure 
interventions were instituted in tandem. New York and Paris 
were exemplar in this approach, blanketing their cities with 
new safe streets, bikeways, and closed roadways (Buehler 
and Pucher 2024). In such an environment, isolating the 
impact of a singular infrastructure intervention would be 
nearly impossible, as the reasonable spatial catchment for a 
given intervention could easily overlap with its nearest inter-
vention neighbor. Philadelphia, however, did not undertake 
anywhere near this level of experimentation with provisional 
cycling infrastructure. Although the city did engage in dras-
tic reductions of roadway and parking spaces to allow for 
outdoor dining, especially in the downtown area, MLK was 
the singular example of a closed major roadway for the pur-
poses of recreation in the city. Minor roadways were closed 
periodically and we address this concern in the Limitations 
section of the Discussion and Conclusion. Therefore, we can 
reasonably measure the impact of the closure of MLK based 
on spatial proximity to this roadway, given that there were no 
other substantive interventions during the pandemic that 
explicitly would yield changes in the cycling landscape.

Figure 1 provides a visual illustration of the approach we 
take to spatially define treatment and control stations. We 
limit the study area to only those bikeshare stations in 
Philadelphia’s network that are within 1,000 m of MLK (n = 
25). We define this buffer area using Euclidean distance and 
highlight the benefits and limitations of using the Euclidean 
approach in the Discussion and Conclusion section. After 
limiting the study area to only these twenty-five stations, we 
define “treatment” stations as those that are within a 500-m 
buffer of MLK (n = 8; blue stations and buffer in Figure 1). 
The “control” group are the remaining stations (n = 17) that 
are between 500 and 1,000 m of MLK (red stations and buf-
fer in Figure 1). The use of a 500-m buffer to define close 
spatial proximity to a feature of interest is often employed in 
the broader transportation literature including studies that 
look at public transit (X. Chen et al. 2022; Guerra, Cervero, 
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and Tischler 2012) and car ownership (Ding and Cao 2019). 
This same buffer distance is regularly used to explore the 
effects of bicycle infrastructure (Cervero et al. 2009; Fuller 
et al. 2013; Madsen et al. 2014; Prins et al. 2014). Previous 
examples in the transportation literature explicitly employ 
500-m buffers to spatially define a “treatment” area and the 
500- to 1,000-m window as the “control” area for a DID 
model (Dai, Diao, and Sing 2024).

Although there are concerns raised around the limited 
empirical foundations for using 500/1,000-m buffers 
(Laviolette, Morency, and Waygood 2022), the benefits of 
using such distance thresholds for cycling research outweigh 
the issues. Namely, these distance thresholds are regularly 
employed in the literature, and, for our modeling purposes, 

500 m reflects a very short cycle trip (high access), while 
1,000 m reflects a slightly longer trip (lower access). It is 
important to note that this is a conservatively defined control 
group for at least three reasons: (1) 1,000 m is not a very 
large distance to cover by bicycle, meaning that even the 
most distant stations in the control group could relatively 
easily make use of MLK Drive, (2) many of the “control” 
stations are located just beyond the 500-m threshold, and (3) 
all of the “control” stations have reasonable access to the 
Schuylkill River Trail, a bike path on the opposite bank of 
the Schuylkill River from MLK, and Philadelphia’s flagship 
example (before the pandemic) of separated bicycle facili-
ties. Together these conservative features suggest that the 
estimated impact of closing MLK in the DID models would 

Figure 1. Study-area bikeshare stations classified by treatment and control groups.
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likely be an underestimate of the policy effect of new infra-
structure like a closed roadway.

Inputs to the DID Model

We employ DID models to analyze the semi-causal impact of 
the provisional road closure of MLK in Philadelphia on aver-
age bikeshare trip durations that originated from nearby sta-
tions. This approach allows us to isolate and interpret the 
effect of the road closure policy by examining how trip dura-
tions changed for stations near the closed road (which make 
up the treatment group) compared to stations somewhat far-
ther away (which make up the control group), before and 
after the intervention. The Indego bikeshare system provides 
origin-destination, trip-level data for all trips taken since the 
program’s launch in Spring 2015. We include data beginning 
in January 2016, the first full year of service. Like many 
bikeshare systems (Nguemeni Tiako and Stokes 2021), 
Indego adjusted their policies in response to the pandemic, 
reducing the cost of an unlimited monthly pass to $5 from 
$20 for the first months of the pandemic (Hooven 2020). In 
addition, Indego engaged in active system expansions 
through the pandemic (Pulcinella 2021).

Our DID model can be represented as:

Trip Duration  f
Intervention  Treatment

 Intervention Tre
�

, ,

, aatment

�

�
�

�

�
�

where Trip Duration is the time that elapsed for a given ride 
from check out at the origin station to check in at the destina-
tion station (or the same station for a circular trip), which we 
aggregate to the daily average for each origin station in the 
data; Intervention is an indicator that defines trips that origi-
nated within the time period when MLK was provisionally 

closed to automobiles (March 20, 2020–August 3, 2021); 
Treatment is an indicator that defines the treatment and con-
trol groups based on the Euclidean distance of origin stations 
to MLK, such that “treatment” stations are ≤500 m of MLK, 
and control stations are >500 m and ≤1000 m of MLK; and 
Intervention × Treatment is the interaction term between the 
temporal and spatial indicator terms. Model variables and 
definitions are summarized in Table 1.

Interpretation of DID Model Coefficients

The coefficient on each term provides a unique interpretation 
of the relationship between our predictors and the dependent 
variable. In this model, the intercept represents the baseline 
average trip duration for trips originating from control sta-
tions before the road closure. The coefficient on the 
Intervention term isolates the main effect of the road closure 
on the control group, analogous to the baseline pandemic 
effect of the intervention. The Treatment coefficient captures 
the pre-intervention differences between the treatment and 
control groups. The interaction term Intervention × 
Treatment is the crucial term in the model, as it represents the 
differential impact of the road closure on the treatment group 
relative to the control group.

For the interpretation of the interaction term to hold, the 
parallel trends assumption must be satisfied. In our study, 
the close physical proximity of treatment and control sta-
tions ensures that external factors like weather or city-wide 
biking trends affect both groups similarly. This uniformity 
allows us to attribute differences in trip durations specifi-
cally to the road closure intervention. Our treatment and 
control group design also removes inconsistency in factors 
that vary over time. Bikeshare trip durations can change 
over time due to many variables such as diffusion of sys-
tem information to the population or changes in biking cul-
ture across the city (Fishman 2020). As observations in our 

Table 1. Model Variables and Definitions.

Variable Definition Units

Trip level variable
Trip Duration Time elapsed from check out at origin station to check in at 

destination station
Minutes

Differences-in-differences model variables
Origin Bikeshare station from which the bicycle was checked out for 

which trip durations are aggregated
Longitude/Latitude Degrees

Time Day and year combination for which trip durations are aggregated Day + Year
Intervention Indicator variable defining observations in policy intervention/

provisional road closure period
Binary
(1 = Time ≥ March 20, 2020 and Time 
≤ August 3, 2021/ 0 = Time < March 
20, 2020 OR Time > August 3, 2021)

Treatment Indicator variable defining observations in spatial proximity to 
Martin Luther King Drive

Binary
(1 = Origin station ≤ 500 m of MLK/0 
= Origin station > 500 m and ≤ 
1,000 m of MLK)
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treatment and control groups were observed concurrently, 
effects of these time-varying factors related to cycling, and 
more general time-varying factors like weather, are uni-
form across both treatment and control groups. As a result, 
we can isolate and compare the effects of the MLK road 
closure on these trips.

The primary goal of DID models is not to maximize pre-
dicted variance in the outcome variable (reflected in metrics 
like the r-squared value). Rather, they are designed to pro-
vide robust causal inferences. Thus, even with a potentially 
low r-squared value, the interpretation of key terms in the 
model remains reliable.

Characteristics and Background for Model Inputs

The population-level context for our study area also sug-
gests that the treatment and control groups reflect similar 
baseline conditions against which to evaluate the impact 
of the road closure on MLK. Table 2 shows that census 
tracts in the treatment and control areas both have average 
incomes higher than the mean across Philadelphia. While 
the treatment tracts feature higher incomes on average, 
and there is some evidence that higher income areas fea-
ture more bikeshare check outs in Philadelphia (Caspi and 
Noland 2019), there is not a clear link between income 
and bikeshare trip durations, the dependent variable of 
interest in our study. Treatment and control tracts feature 
similar populations and population densities. Importantly, 
both treatment and control tracts feature higher levels of 
households without car access than compared to the city at 
large (see Table 2).

It is important to note two caveats when interpreting 
differences in the descriptive measures in Table 2: (1) given 
the definition of treatment and control buffers, census tract 
boundaries can span the treatment and control zones, and 
thus can be counted in both treatment and control columns in 
the table, and (2) it is not reasonable to evaluate whether the 
differences in mean values for tract-level indicators between 
treatment and control areas are statistically discernible given 
the very small sample size of census tracts.

Moving to background characteristics for our dependent 
variable (see Table 3), average daily trip durations, trips that 
originate from our study area feature much higher durations 
at around twenty-six minutes, compared to the system-wide 
average of around fifteen minutes over the study period (see 
Davidson et al. 2022). Trips that originate from treatment 
stations reflect daily duration averages nearly three minutes 
higher than those that originate from control stations. We 
evaluate the statistical discernibility of these differences in 
greater detail in the Results.

Results

Both treatment and control groups display similar patterns 
over the time series (see Figure 2), where seasonal variation 
leads to relatively constant patterns in duration between 2016 
and 2019, very substantial increases in duration during the 
spring/summer of 2020 at the outset of the pandemic, and a 
relative return to baseline conditions in spring 2021. The key 
feature of this initial plot of the time-series is that parallel 
trends assumption appears to generally hold. Variation in 
treatment and control groups tend to follow one another, 

Table 2. Summary Measures for Population Context Variables.

PHL
(n = 374 tracts)

Treatment
(n = 6 tracts)

Control
(n = 11 tracts)  

 Mean SD Mean SD Mean SD
Difference in 

meansa

Income ($) 49,393.74 25,158.43 75,771 26,609.63 57,447.64 26,790.07 18,323.36
Population 4,217.18 1,699.18 2,883.67 1,593.93 3,914.55 1,713.04 −1,030.88
Population density (1/km2) 7,642.49 4,402.95 9,258.45 6,405.64 8,238.73 4,334.19 1,019.72
No car access (%) 30.85 17.03 32.1 14.96 39.82 19.01 −7.73

Note: Census tracts in the “treatment” column can also appear in the “Control” as some treatment and control stations are located within the same 
tract.
aDifference between treatment and control means.

Table 3. Summary Measures for Average Daily Trip Durations for Trips Originating from Bikeshare Stations in Study Area Over the 
Full Time Series.

Study area
(n = 25 stations)

Treatment
(n = 8 stations)

Control
(n = 17 stations)  

 Mean SD Mean SD Mean SD Difference in meansa

Trip duration (minutes) 26.44 39.28 28.04 40.45 25.8 38.78 2.24

aDifference between treatment and control means.
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including both groups experiencing substantial increases 
post-intervention.

On average, a pre-intervention trip originating from a 
control group station lasted 20.5 minutes, compared to 21.9 
minutes in the treatment group (difference in means signifi-
cant at p < .001). While the average trip duration for control 
group stations increased by more than three minutes post-
intervention to 23.7, treatment station duration averages 

increased to 27.5 minutes (difference in means significant at 
p < .001). The change in these differences is described in the 
boxplots in Figure 3.

The coefficients of the DID model mirror the results 
described above (see Table 4). The intercept term describes 
average trip durations for control group stations pre-interven-
tion, which were around 20.5 minutes. The coefficient on 
Intervention describes change in duration over time for trips 

Figure 2. Time series for average daily bikeshare trip duration/day by treatment/control group.
Note: Fourteen-day rolling averages presented. Dashed line marks March 20, 2020, when MLK was closed to automobiles.

Figure 3. Boxplots that describe average trip durations by treatment and control groups months pre/post Martin Luther King Drive closure.
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originating from control group stations of around 3.2 minutes. 
This change can be thought of as the baseline pandemic effect 
absent the policy intervention of the road closure. The coef-
ficient on Treatment suggests that trips originating from treat-
ment stations, those within 500 m of MLK, feature average 
durations 2.2 minutes higher than control stations pre-pan-
demic. Finally, the coefficient on the interaction term sug-
gests that trips originating from treatment stations saw an 
increase of 2.4 minutes above control stations following the 
closure of MLK. This change can be considered the change in 
duration above the expected increase due to change over time, 
or, put differently, the “policy effect” of the road closure.

Robustness Check on Initial Model Specification

We conduct a robustness check on the DID model that 
extends data included in the time-series to December 31, 
2021. While the provisional road closure of MLK lasted 
nearly 1.5 years, the roadway partially reopened for vehicle 
use on August 4, 2021, at which point, a portion of MLK 
constituting roughly half of the roadway’s total length was 
reopened to vehicular traffic. Three out of 29 stations in the 
study area are within 1,000 m of the reopened portion of 
MLK, two in the control group and one in the treatment 
group. The remaining twenty-six stations are located closest 
to the portion of MLK Drive that remained closed to vehicles 
through the end of 2021.

In response to this development in the policy intervention, 
we fit a second model that extends the time-series to add in 
data from August 4 to December 31, 2021, but retains the defi-
nitions of the Intervention and Treatment indicators as defined 
in the original DID model. All stations in the 500-m buffer of 
MLK are still considered “treated,” even those within the buf-
fer of the reopened roadway, and all data post March 20, 2020, 

are part of the “intervention” period, even though the roadway 
was no longer fully closed for days after August 4, 2021. This 
robustness check allows us to investigate how supportive 
infrastructure interventions for cyclists can yield impacts as 
the infrastructure itself changes over time.

The time-series plot when including data through the end 
of 2021 looks similar to the initial time-series (see Figure 4). 
Given that this addition of data comes from fall and early win-
ter of 2021, there is an expected decline in durations, as the 
conditions for cycling during these seasons in Philadelphia 
worsen. Nonetheless, it appears that the treatment group con-
tinues to exhibit higher trip durations as compared to the con-
trol group. These visual patterns are reinforced in the results of 
the DID model when including the additional data. The sign 
and statistical discernibility of the Intervention, Treatment, 
and Intervention × Treatment coefficients are consistent from 
the original DID model (see Table 5). This size of the Treatment 
and intercept terms are unchanged from the original model 
given the nature of the DID model specification. The size of 
the Intervention coefficient is smaller compared to the initial 
model, due to the inclusion of later date from fall/winter when 
cycling conditions are worse in Philadelphia. Finally, the inter-
action term in the robustness check model is slightly smaller 
than in the original DID model.

Figure 5 visually summarizes the results of the DID and 
robustness check models as well as the differences between 
the two models. The three lines presented reflect the change 
in average trip durations over time for the control group (in 
red), the treatment group (in blue), and the counterfactual (in 
light blue, dashed). The counterfactual reflects the expected 
change in duration for the treatment group, absent exposure 
to the “treatment” of the MLK road closure. The slope for the 
change in the treatment group is steeper than the counterfac-
tual, even when including data following the partial reopen-
ing of MLK.

Discussion and Conclusion

Interpretation of Results

As expected, we find substantial increases in average daily 
trip durations for both the treatment and control groups 
around the time that MLK was closed to automobiles, given 
that the beginning of this policy experiment coincided with 
the start of the pandemic lockdowns. In the time series plots 
(Figures 2 and 4) we see a sharp vertical increase in our 
dependent variable during spring/summer of 2020, a trend 
which is mirrored by the positive and highly statistically dis-
cernible coefficient on the Intervention term in our models 
(Tables 4 and 5). This initial finding reinforces earlier 
research (Davidson et al., 2022) that suggests strong increases 
in trip durations across the bikeshare system in Philadelphia 
at the outset of the pandemic.

Although these overall trends of increasing trip durations 
during the pandemic are found in both the treatment and 

Table 4. Differences-in-Differences Model Results.

Dependent variable:

 Trip duration

Intervention 3.179***
 (0.186)
Treatment 2.154***
 (0.183)
Intervention × Treatment 2.403***
 (0.343)
Constant 20.536***
 (0.097)
 
Observations 37,376
R2 0.027
Adjusted R2 0.027
Residual SE 13.506 (df = 37,372)
F statistic 341.396*** (df = 3; 37,372)

***p < .001.
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control groups, it is important to highlight the differences 
between these groups before MLK was closed to automo-
biles. While the average trip durations in Figure 2 appear to 
be visually quite similar between the treatment and control 
groups, we find differences in the pre-intervention period, as 
described by the statistical analyses. Trips that originate from 
treatment stations exhibit average durations approximately 
1.5 minutes longer than control stations before the MLK clo-
sure. We believe this baseline difference may be due to the 
fact that during non-pandemic periods, MLK was still 

regularly closed to automobiles on the weekends. Although 
both treatment and control stations are located in a bicycle-
infrastructure rich area of Philadelphia, namely in close prox-
imity to the Schuylkill River Trail, the periodic closure of 
MLK may have spurred longer travel times pre-pandemic.

In the post-intervention period, after MLK was fully 
closed to automobiles, the difference between treatment and 
control average durations swelled to almost four minutes, 
and this difference is highly statistically discernible. It is 
important to note that both treatment and control groups saw 
substantial increases in the median duration and a positive 
movement of the interquartile range post-MLK closure 
(Figure 3). These two summary measures signal that the 
changes in duration are robust across multiple measures of 
central tendency, beyond evaluating only the differences in 
means (Bills and Walker 2017). These additional metrics 
also help to illustrate that the difference between treatment 
and control durations is substantially greater at a range of 
values—the 25th, 50th, and 75th percentile values for dura-
tion are all farther apart between treatment in control during 
the post-closure period than in the pre-closure one.

Policy Implications

The results of the DID model (Table 4) extend these initial 
results and strongly suggest the positive, semi-causal impact 
of supportive infrastructure on bikeshare trip durations. 
Beginning with the intercept term in the model, we find that, 
pre-pandemic trips that originated from control stations in our 
study area featured average durations of more than twenty 
minutes. This value highlights that trips in this study appear to 

Figure 4. Time series for average daily bikeshare trip duration/day by treatment/control group; including data post-partial reopening of 
Martin Luther King Drive.
Note: Fourteen-day rolling averages presented. Dashed line marks period between March 20, 2020, and August 3, 2021, when MLK was fully closed to 
automobiles.

Table 5. Robustness Check Model Results.

Dependent variable:

 Trip duration

Intervention 1.544***
 (0.167)
Treatment 2.154***
 (0.182)
Intervention × Treatment 2.082***
 (0.308)
Constant 20.536***
 (0.096)
 
Observations 40,903
R2 0.016
Adjusted R2 0.016
Residual SE 13.431 (df = 40,899)
F statistic 227.465*** (df = 3; 40,899)

***p < 0.001.
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be longer at baseline than the system-wide average of around 
fifteen minutes (see Davidson et al. 2022). This is important 
to note, given that any changes in duration in the models 
responding to the MLK closure are starting from an already 
high baseline pre-intervention. The coefficients on the 
Intervention and Treatment term reinforce the findings 
described visually in Figures 2 and 3. The baseline difference 
between treatment and control groups pre-pandemic is around 
2.4 minutes, as described by the coefficient on Treatment. The 
“pandemic” effect, as described by the coefficient on 
Intervention is a quite substantial, at around 3.2 minutes, sug-
gesting an increase of nearly 16 percent compared to the pre-
intervention baseline. Both findings mirror the bivariate 
analysis, but do not, on their own, suggest a semi-causal 
impact of the MLK closure. Rather they serve as the key con-
trol variables for the interaction between Intervention and 
Treatment, which allows for semi-causal inference.

The core policy implications are derived from the interac-
tion term in the DID model, the key indicator in our study. 
The interaction between Treatment and Intervention, is large 
at 2.4 minutes, and highly statistically discernible. Taken on 
its own, this value would suggest 11 percent increase above 
the pre-intervention baseline for the treatment group. Recall, 
however, that the interaction term reflects the additive effect 
of being in the treatment group on top of the baseline effect 
described by the coefficient on Intervention, meaning that 
the temporal plus policy effect is closer to an increase in 
durations of 25 percent compared to baseline. In this light, 

the coefficient on the key interaction term presents a very 
strong indication that supportive infrastructure can generate 
increases in cycling trip durations in the population, at least 
for bikeshare users. Recall, as well, that the stations in both 
the treatment and control groups reflect higher than average 
durations at pre-pandemic baseline.

This suggests that supportive infrastructure can not only 
yield positive impacts on use, but also that there does not 
appear to be a “ceiling effect” to this increase. Even in areas 
typified by baseline higher cycling trip durations, new infra-
structure can yield increases in use. Finally, the coefficient on 
the interaction term in our robustness check model (Table 5) 
is still large and statistically discernible, signaling the persis-
tence of the effect of new infrastructure on treatment group 
stations. The results of this robustness check model only 
strengthen the semi-causal impact of supportive, cyclist-
serving infrastructure, leading to increased trip durations. 
The strength of our findings is described succinctly in Figure 
5, where, when compared to the counterfactual, the semi-
causal, positive impact of supportive infrastructure on bike-
share use is strong and clear, displaying a much steeper slope 
across both the DID and robustness check models.

Limitations

While these findings are robust, and suggest a semi-causal 
impact of new, supportive infrastructure on trip duration, 
there are several limitations to our study. First, given the 

Figure 5. Illustration of robustness check (A) and differences-in-differences (B) model results.
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administrative nature of the data, we have no way of knowing 
if users in the treatment group rode on MLK. The Indego sys-
tem does not provide any geolocated route data for trips taken 
on their bicycles. It could be possible that trips originating at 
treatment stations traveled for longer periods of time, but on 
other roadways than MLK. Second, we define the spatial buf-
fers for treatment and control groups using Euclidean as 
opposed to network distance. While this has several advan-
tages for measuring the lived experience of cyclists (who do 
not traverse the road network in the same way as automo-
biles—for example, using sidewalks, traveling against traffic, 
etc.), it may not capture certain areas where stations are prac-
tically inaccessible to MLK given geographic barriers and/or 
the nature of the street network.

Third, it may be that the closure of MLK attracted more 
recreational cyclists to nearby treatment stations, for exam-
ple, individuals who would drive or walk to a station near 
the roadway and check out a bike for a long-duration, recre-
ational trip. Furthermore, if the changes in duration were 
due only to increases in recreational use, the semi-causal 
impact of infrastructure we find in the models cannot speak 
to changes in utilitarian cycling (Winters et al. 2007) or 
commuting (Guerra et al. 2020). Fourth, in a parallel con-
cern, it may be the case that the increased trip durations 
were derived in part from expanded time budgets/greater 
“time affluence” (Giurge, Whillans, and West 2020; Kasser 
and Sheldon 2009) for higher income users to devote to rec-
reation. As has been documented during the pandemic, indi-
viduals of higher incomes had more flexibility in their 
schedules, more ability to limit their travel for essential 
needs (shopping, work, etc.), and more capacity to expand 
their recreation-based trips, than did lower income popula-
tions (Kar et al. 2022). Fifth, our data only reflect changes 
for bikeshare users. While bikeshare riders tend to more 
closely reflect characteristics of the overall population than 
do cyclists generally (Buck et al. 2013), our findings may 
not speak as well to the impact of provisional infrastructure 
for the general cycling population.

Sixth, and finally, our data are only drawn from one case 
study in Philadelphia, which featured one example of major 
provisional, cyclist-serving infrastructure during the pan-
demic, but did feature a number of smaller interventions that 
may have also impacted bikeshare trip durations. One promi-
nent example are Philadelphia’s “Playstreets” program, 
where certain roadway segments are closed to traffic when 
school is not in session to allow for expanded children’s rec-
reation. These closures have been ongoing for the last half 
century and continued through the pandemic (https://www.
phila.gov/programs/playstreets/). Although these streets the-
oretically support cycling, there were only limited examples 
from the Summers of 2020 and 2021 in close proximity to 
MLK, and the vast majority of these closures occurred within 
the “control” area, as opposed to the “treatment” area (see 
Figure A1). This suggests that such closures are only limited 
confounders in our model, if they are confounders at all.

Future Work

These limitations, in tandem with the strong signals in our 
analysis, chart a course for future research on this topic. 
First and foremost, other data sources, such as those col-
lected by phone-based applications or other trackers that 
describe geographic locations and perhaps demographic 
backgrounds of individual users (Fischer, Nelson, and 
Winters 2022; Nelson et al. 2021) could be employed to 
measure more granular use on and impacts of MLK during 
the pandemic. Primarily, these data would allow us to see 
who actually rode on MLK, as opposed to other roadways in 
the next. Initial results using automated counters suggest 
that use on MLK increased dramatically during the pan-
demic (Cowan 2021), but more spatially granular, user-level 
information would help to validate the causal inferences in 
our models. These data would also allow us to expand our 
findings beyond the bikeshare population and toward 
describing cyclists more generally. Second, individual-level 
data could help to remediate the concerns around the con-
founding distribution of time affluence. Given that treat-
ment tracts in our study exhibit higher incomes than the city 
average, but also display a very large amount of variability 
as displayed by the standard deviation in income (see Table 
2), tract level proxies are likely not sufficient controls in the 
model, and individual-level variation in income is necessary 
to delineate the differences between the impacts of infra-
structure and income on trip duration.

Third, the models could be fitted with additional response 
variables, namely trip generation. While we argue that dura-
tion is an important indicator of cycling levels, it is important 
to learn about how infrastructure impacts the number of trips, 
not only the length of trips. Fourth and finally, additional 
case studies could be introduced to validate the results from 
Philadelphia. Other case studies from a diverse array of cities 
and regions could explore infrastructure impacts in areas that 
engaged with multiple major interventions, or those that gen-
erated no new infrastructure during the pandemic. In addi-
tion, other case studies that have geotagged bicycles, could 
allow for more robust inference around trip purpose, which 
would allow us to distinguish between utilitarian and recre-
ational purposes in the model specifications.

With these limitations and future research directions in 
mind, the findings in this study support the argument that 
new, supportive, and robust infrastructure for cyclists yields 
greater bikeshare trip durations. Even during an environment 
characterized by increased levels of use across the bikeshare 
system due to the pandemic, the road closure of MLK yielded 
semi-causal and very substantial increases in trip durations 
for those stations in immediate proximity to the road closure, 
as compared to those stations within reasonable distance, but 
not immediately proximate to MLK. It will benefit the bicycle 
planning community to use this example as an impetus to spa-
tially grow the network of safe and supportive infrastructure, 
given that such improvements can yield positive impacts.

https://www.phila.gov/programs/playstreets/
https://www.phila.gov/programs/playstreets/
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Appendix

Figure A1. Location of street segment centroids for Philadelphia “Playstreets” closed to automobiles in Summer 2020 and/or Summer 
2021, overlaid on control and treatment buffers used in differences-in-differences models.
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