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Abstract
As federal spending and planning for air transportation infrastructure looks to prioritize access for disadvantaged populations,
aviation systems planning metrics that measure accessibility at the individual level are necessary. Existing metrics, from the
mobility-driven metrics focused on efficiency and on-time performance to geographic accessibility metrics focused on con-
nectivity, lack the detail of the multiple, interlocking constraints that limit potential travelers (especially lower-income trave-
lers) from executing their agency and accessing the aviation system. We seek to develop a methodology, resulting in new
analysis metrics, to quantify accessibility on an origin–destination basis based on individual constraints, time- and cost-based
impedance, and aviation travel supply. We develop and apply our Aviation-accessibility Integrated Mobility (AIM) metric to
empirically model relative accessibility based on traveler-specific constraints, accounting for individual-level sensitivity to travel
costs and propensity to travel by ground access modes. We illustrate how equity-focused variables can change the calculus
and geographic distribution of accessibility by applying the AIM to our case study region: Philadelphia, Baltimore, and Newark
metropolitan areas, a region with significant socioeconomic disparities, to diverse markets (Austin, Atlanta, Nashville). Our
findings indicate that incorporating individual constraints greatly influences the calculation of accessibility; additionally, we find
that transportation supply and service characteristics alter the distribution of accessibility. Our model supports a national
map of accessibility and potential policy recommendations to expand traditional federal airport infrastructure projects, such
as targeted air service enhancement.
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The 2021 $1.2 trillion federal bipartisan infrastructure
bill included $25 billion for aviation infrastructure with a
prioritization on projects that improve accessibility to
the aviation system for historically disadvantaged popu-
lations. As accessibility captures ‘‘the fundamental differ-
ence between persons in terms of their freedom to engage
in a range of activities and their ability to execute their
agency’’ (1), focused spending on projects that improve
accessibility could redefine how diverse populations are
able to utilize the aviation system to travel. Yet, identify-
ing the projects that improve accessibility for diverse
populations is a significant, untested challenge. Existing
accessibility measures tend to be narrowly defined by
individual or locational impedance (i.e., time, cost). The
multiple, interlocking constraints that limit potential

travelers (especially lower-income travelers) from travel-
ing by air—for example, individuals may have limited
access to an automobile (2), airfare can be an access
restriction to lower-income populations (3), and the
uneven supply of routes to desired destinations can cause
travelers to forgo travel or seek out very distant airports
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(4)—are not incorporated into existing accessibility mod-
eling frameworks. Thus, the expenditure of federal trans-
portation dollars is at risk of prioritizing infrastructure
developments that expand services for the least con-
strained and the mobile travelers rather than improving
accessibility for disadvantaged populations. To truly
prioritize disadvantaged communities with the federal
funding allocated for airports, the aviation planning
community requires scalable methodologies that repre-
sent the true airport and aviation accessibility assessment
for disadvantaged communities, incorporating equity
considerations like affordability of airfare and ground
transportation supply and constraints.

Across the distributed actors in air transportation,
performance metrics have taken multiple perspectives
skewing toward mobility and delay from a macroscopic
level, rather than individual accessibility. Airlines, who
are responsible for the allocation of flights and seat
capacity, focus on optimizing for revenue as well as
metrics such as on-time performance. The Federal
Aviation Administration (FAA) and Department of
Transportation (DOT), looking to ensure safety while
managing capacity efficiently, also estimate and report
on on-time performance and delay (5). Individual air-
ports have numerous performance metrics, spanning
from quality of customer service to ground congestion.
Yet, metrics focused on accessibility, particularly accessi-
bility to the aviation system for disadvantaged groups,
have not been developed or adopted at a large scale.
There are disparate examples of planning processes
incorporating expanded views of accessibility, such as
metropolitan planning organizations and regional plan-
ning coalitions studying regional physical accessibility to
airports (6), and incentive programs like the federal
Essential Air Service that focus on increasing accessibil-
ity to rural communities (7). However, these programs
and studies stop short of developing and utilizing a
method to quantify accessibility from the perspective of
an individual that incorporates individual details and
constraints.

In the following study, we develop a mathematical
formulation of accessibility centering the constraints that
individuals face in accessing the air transportation sys-
tem. Our Aviation-accessibility Integrated Mobility
(AIM) metric incorporates multiple impedance factors of
intercity transport, including aviation supply and service
characteristics of local ground access and long-distance
travel. Using traditional accessibility variables like time
and cost, we proactively assess the trade-offs inherent
in a change in transportation supply during infrastruc-
ture development. We then build on the concept of the
ability of different groups in executing their agency by
taking a cohort-based approach. Using established para-
meters in utility modeling scholarship and income-based

sensitivities, we jointly quantify individual constraints
and preferences. The empirical portion of the method
presents a case study that demonstrates the significance
of incorporating individual constraint variables in an
accessibility calculus from a spatial perspective. Findings
indicate that individual constraints and transportation
supply significantly change the landscape of accessibility
and help redefine aviation accessibility both conceptually
and methodologically as a planning metric. From this, we
present several policy recommendations and motivate a
new framework for mapping accessibility at a national
scale.

Literature Review

The relative maturity of aviation systems metrics such as
on-time performance and the lack of metrics on the
diversity of travelers who can access an airport is consis-
tent with a broader struggle in transportation planning:
planning for increased mobility, defined as efficiency and
speed of movement (8) versus planning for increased
accessibility, the ability of an individual to interact with
social or economic opportunities (9). Planning for prox-
imity to destinations, increased mobility, and higher
accessibility often have conflicting objectives with com-
peting political forces that shape people’s ability to tra-
verse space and reach desired destinations.

Part of what is creating this tension is the lack of an
accepted framework around accessibility in the context
of aviation to support equity-focused decision-making.
Without a nuanced definition of accessibility that incor-
porates traveler constraints and specific traveler desires,
intercity planners are unable to understand how potential
infrastructure development may affect individual-level
accessibility (9). Implicitly, we understand the criticality
of evaluating accessibility in a detailed, individual-
specific way. Consider that, before a change in infrastruc-
ture, the National Environmental Policy Act (NEPA) of
the U.S. requires the full enumeration of social, eco-
nomic, and environmental impacts for any large scale
federal action, with a focus on different populations (10).
Yet, with the NEPA process, changes in individual acces-
sibility with respect to individual constraints are not mea-
sured, only how the environmental impact falls on
different populations (11).

Foundational examples for a framework in measuring
aviation accessibility include the small but rich literature
focused on evaluating the air transportation system for
accessibility. This literature largely measures a traveler’s
geographic proximity to air service, with air service
defined as a function of variables such as flight seat
availability, cost, and level of service. Scholars have used
these measures to evaluate programs such as the
Essential Air Service (EAS), a DOT program aimed at
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improving rural access by incentivizing airlines to
increase services for smaller communities (7, 12), and to
evaluate the impact of exogenous economic shocks (13,
14). These approaches quantify general impedance based
on time and cost rather than parameterizing individual-
level variables related to accessing opportunities by air
travel, such as, for instance, affordability of airfare and
vehicle availability in traveling to an airport. Without
this focus on real-world constraints, existing accessibility
models do not capture true accessibility in one’s ability
to access opportunities by transportation (15).

In the broader intercity transportation literature, there
has been a call for considering more variables that
describe the abilities and constraints of, and impacts on,
the individual traveler in accessibility calculations. The
intercity literature has attempted to measure accessibility
with a dynamic, multi-dimensional set of factors includ-
ing social costs that simultaneously weighs impacts of
travel (16, 17). While these scholars illustrate the impor-
tance of accounting for individual travel behavior and
perceptions, these studies stop short of cohort-specific
analysis of travelers and consideration of the constraints
of low income and disadvantaged populations. Gosling
(11) also outlines a framework pertaining to mobility
and accessibility including travel time, delay, access to
desired destinations, access to the airport system, relia-
bility, cost effectiveness, safety, and equity, all of which
have yet to be captured and weighed in an integrated
quantitative assessment for intercity transportation. To
seek a framework for incorporating individual con-
straints into accessibility analyses, we turn to the urban
planning literature.

Scholars in transit planning have developed perspec-
tives and methods to incorporate connectivity to oppor-
tunities for more vulnerable populations in accessibility
models. In defining an approach in the early urban acces-
sibility scholarship, Wachs and Kumagai (18) elevate the
concept of constraints and the abilities of different indi-
viduals to reach certain destinations by presenting an
approach that emphasizes constraints and balances the
supply of travel opportunities with a demand-side impe-
dance. To broadly incorporate equity, Wachs and
Kumagai define cohorts based on income and employ-
ment and seek to capture accessibility as a weighted sum
of the percentage of individuals in a cohort in a zone and
the number of opportunities that can be reached in time
thresholds. The study finds that an individual’s accessi-
bility is largely influenced by the availability of an auto-
mobile, location to urban areas or transit stops, and a
host of other person-based variables that can pose
restrictions on the ease with which individuals access
opportunities.

Incorporating demand-side travel impedances that
reflect individual-level constraints is critical to account

for the limitations in accessing opportunities, as opposed
to quantifying accessibility through supply (19). To better
quantify the interaction between individuals’ constraints
and accessibility, classic urban accessibility scholarship
suggests the integration of utility-based frameworks into
location-based models (15). Bills and Walker (20) do this
by creating a log sum equity indicator, an established
metric to capture utility and accessibility, to compare dis-
tributions of travel changes across planning scenarios in
demonstrating a method for examining the impacts of
transportation investment across population groups.
Based on these considerations, we now construct an
aviation-accessibility model that incorporates individual-
level preferences and constraints.

Model Formulation

We propose a novel methodology to model accessibility
to the aviation system in the AIM metric. In this section,
we explain the conceptual and mathematical foundations
of the AIM methodology. Our choice of model functional
form and the robustness of our formulation is discussed
below, under Spatial Analysis and Discussion.

Conceptual Framework

Previous literature encourages—but stops short of
developing—an accessibility model that more accurately
characterizes the complexities of the aviation system
based on individual-level ability to reach desired destina-
tions. The AIM metric adopts a multi-modal modeling
approach for measuring aviation accessibility between an
origin–destination pair, outputting a single, comprehen-
sive metric that captures the trade-offs between air ser-
vice characteristics and individual traveler behavior. The
AIM metric balances the supply of travel opportunities
between an origin airport i and destination airport j for
origin census tract q with a demand-side, ‘‘impedance’’
measure that reflects the barriers in how individuals reach
these opportunities as a function of airfare, time, reliabil-
ity, and individual constraints for both local airport and
long-distance access. This approach in aviation accessibil-
ity will ultimately allow planners to understand and
assess the accessibility impacts of a potential infrastruc-
ture development on disparate socioeconomic groups.

A major innovation of the AIM metric is the develop-
ment of priority area indicators (PAIs), a novel mechan-
ism to quantify accessibility from the individual
perspective through several ‘‘modules.’’ Each PAI in the
AIM represents a module or major component of avia-
tion accessibility: mobility, affordability, time and relia-
bility, and local airport access. Both aviation and urban
planning scholars have acknowledged the need for PAIs
from a qualitative perspective; we seek to parametrize
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these PAIs with multiple variables that integrate individ-
ual constraints as well as transportation system charac-
teristics. The concept of priority area indicators allows
presentation of the model in a modular format that per-
mits examination of the impact of each PAI individually
on the aggregated accessibility metric. The construction
of the model in this manner allows for further mathemat-
ical expansion in future iterations of the AIM.

Throughout these PAIs, we integrate variables that
correspond to the constraints of individuals across
income groups. The AIM incorporates individual con-
straints by defining cohorts, parameterized by v, which
represent a grouping of census tracts based on socioeco-
nomic and demographic variables. Cohort-based vari-
ables account for individual traveler behavior and
preferences and down weight the impedance measure
based on the constraints of a particular cohort, which we
define at the census tract level. We capture sensitivity to
airfare based on cohort-level income, as well as the pro-
pensity for a cohort to travel by a local access mode k,
quantified through private vehicle availability and public
transit usage. This cohort-based approach in modeling
aviation accessibility departs from methods of accessibil-
ity that focus heavily on supply-side metrics; our
demand-side modeling perspective accounts for the indi-
vidual constraints that pose limitations to individuals in
qualifying for the total available supply of opportunities.

Within the impedance measure, we account for the
impact of each PAI variable on the individual traveler.
Quantifying individual valuation is critical in measuring
the total cost of a variable which integrates both the
objective cost and individual perception and utility (16).
To this end, we adapt coefficients from airport choice
utility models that quantify the effects of air service char-
acteristics on a general traveler’s utility. In adapting
these coefficients, we account for the diminishing mar-
ginal returns in utility for each unit increase in the vari-
able, modeling travel behavior theory as in previously
used negative exponential forms (21). In accordance with
established literature, individuals do not face a constant
decrease in utility for increases in time and cost, and our
coefficient estimates capture these diminishing returns to
utility. We further review the airport choice literature and
model specifications below under Estimating Individual
Utility of PAI Variables.

In the following section, we apply this conceptual
framework to develop the set of equations in the AIM
methodology.

Mathematical Framework

Let sij refer to the travel opportunities calculated as the
number of flight seats flown over the course of a year
from origin airport i to destination airport j. This

concept of supply is also discussed in Reynolds-Feighan
and McLay (14), who denote the supply of air travel
opportunities as the number of nonstop seats over the
course of a year to account for both frequency and size
of aircraft. For each census tract q, we compute an AIM
score for origin airport i, destination airport j, and local
access mode k. We then assign the census tract q its max-
imum AIM value over all i and k with a fixed destination
airport j.

AIMqj = max
ik

sij
�Mqijk

� �
ð1Þ

The PAIs notated explicitly in the model are afford-
ability (Cij), travel time and reliability (Tij), and airport
access (Aiqk). Combining these PAIs, we define the aggre-
gated impedance measure Mqijk between origin airport i,
destination airport j, and origin census tract q by nor-
malizing Cij, Tij, and Aiqk across an origin–destination
pair. We express the aggregated impedance measure as a
combination of each PAI similar to Bao et al. (22), who
express the total cost of airport access as a summation of
convenience, time, and affordability. We further define
the variables within each PAI below.

Mqijk =Cij + Tij +Aiqk ð2Þ

The affordability PAI Cij includes both air transporta-
tion and cohort-specific components: the median airfare
per seat (cij) from origin airport i to destination airport j,
and wv, a traveler’s sensitivity to airfare specific to cohort
v. We define cohorts as groupings of census tracts based
on socioeconomic and demographic variables. Recall
from the above Conceptual Framework section, we
weight each PAI with coefficients adapted from existing
airport choice models; the values of these coefficients (s,
t, uv, z, lk) are further described below under Estimating
Individual Utility of PAI Variables.

Cij =s � wv
� log(cij) ð3Þ

The time and reliability PAI includes schedule delay
(wij), average arrival and departure delay (dij), average
airborne time (tij), and processing time (pi) between ori-
gin airport i and destination airport j across flights for a
year.

Tij = t � log wij + dij + tij + pi

� �
ð4Þ

The access to airports PAI Aiqk quantifies accessibility
between census tract q and airport i by mode k 2 K,
where K is a discrete choice set of all possible airport
access modes. We include traveler time (tiqk) and traveler
cost (ciqk) between census tract q and origin airport i for
mode k. The propensity to travel by mode parameter,
denoted by ekv, represents the ability of cohort v to travel
by mode k from census tract q to airport i. The
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parameterization of is further discussed in the next sec-
tion, under Parameterizing Cohort-based Coefficients.

Aiqk = ekv

z

lk

� log(tiqk)+
uv

lk

� log ciqk

� �� �
ð5Þ

Definition of Model Coefficients

In this section, we discuss data and methods used to
parameterize PAI coefficients in the AIM impedance
measure.

Parameterizing Cohort-Based Coefficients

A fundamental contribution of the AIM metric is that
we incorporate the individual constraints of travelers
through a cohort-based approach. We do this by defin-
ing two parameters in which constraints associated with
one’s socioeconomic status may affect one’s accessibility:
the sensitivity to airfare parameter, which we scale by wv,
and the propensity to travel by mode k parameter, ekv.
Both values are specific to the cohort v, which represents
a grouping of individuals based on socioeconomic vari-
ables. Table 1 refers to the coefficient values used in this
study.

Our methodological approach in modeling these para-
meters considers the travel impedances arising from an
individual’s income. The cohort parameter v can be
refined to include any number of socioeconomic defini-
tions; to pilot this concept, we employ three cohorts
based on income (low, middle, and high income).
Certainly income level directly affects one’s ability to pay
for airfare (3); income levels can also serve as a proxy for
vehicle ownership and public transit usage to account for
individual means to access airports by auto and transit
(23, 24). We collect median income by each census tract
from the open-source, publicly available 2019 5-year
American Community Survey (ACS) data and categorize
census tracts into low-, middle-, and high-income cohorts
based on break points from national data sources for
each parameter.

To parameterize wv as a traveler’s sensitivity to pay
for airfare, we utilize survey data that correlates percen-
tages of individuals who have never flown by low
(\$40,000), middle (\$80,000), and high (.$80,000)
income brackets. We interpret these percentages as a

likelihood that an individual can afford airfare based on
their income, thus estimating an individual’s sensitivity
to airfare. The percentages are normalized to construct
the values of wv that map to each census tract, account-
ing for the individual impact of airfare based on traveler
economic status. While we often parameterize models for
sensitivity to airfare based on leisure and business trave-
lers, dividing travelers based on their income classes is
less considered (25, 26). However, the lack of quantita-
tive data on cohort-specific preferences based on airfare
prevents in-depth, nuanced analysis of airfare sensitivity
across socioeconomic cohorts and fare values: in our
pilot study, we model this factor as dependent on
income. We therefore focus on demonstrating the func-
tionality of the cohort-based model rather than precisely
estimating accessibility.

The propensity to travel by mode parameter ekv speci-
fied for mode k and cohort v captures the constraints by
income in utilizing ground access modes; in defining this
parameter, we account for individual-level ability to
travel via private vehicle and public transit across income
groups. Data from the DOT’s study on National and
Household Travel Trends correlates zero vehicle access
with percentages of low (\$22,050), middle
(\$100,000), and high (.$100,000) income brackets
(24). Similarly, for the transit mode, we parameterize ekv
based on the same DOT study that calculates frequency
of transit use for individuals across income groups. In
normalizing these values to parametrize ekv for income
cohorts, we correlate a larger magnitude of the ekv para-
meter with greater airport access impedance, and thus
lower overall accessibility. Similar to the airfare sensitiv-
ity coefficient, we emphasize the functional form of this
equity consideration and encourage additional ways to
parametrize this coefficient, including vehicle ownership
as well as more location-specific metrics of public transit
service characteristics.

Estimating Individual Utility of PAI Variables

To further incorporate individuals’ preferences and the
trade-offs between different accessibility components, we
scale the PAIs within the impedance measure with
traveler coefficients. Disutility has been modeled exten-
sively in the airport access literature and developed in
theoretical frameworks, yet has not been integrated into

Table 1. Cohort-Based Coefficient Values

Coefficient Low income Middle income High income

wv (airfare sensitivity) 0.57 0.30 0.13
ek =car, v (propensity to travel by car) 0.77 0.16 0.06
ek =transit, v (propensity to travel by transit) 0.36 0.81 0.81
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supply-based aviation-accessibility models. In crafting
individual-focused definitions of accessibility, urban
accessibility scholars encourage incorporating utility
modeling frameworks into supply-based accessibility per-
spectives (15). Borrowing from the airport choice litera-
ture, our modeling approach captures the approximate
relationships between the trade-offs individuals make for
different variables (4, 27). We adapt the coefficients from
Hess et al. (28) and Hess and Polak’s (29) multinomial
and nested logit models to capture individual impact of
airfare (s), travel time (t), access cost (uv), and access
time (z). Access cost and time variables are also specified
by mode k with the coefficient lk . Further, we parame-
terize the coefficient for access cost based on income
groups to reflect varying cost sensitivity.

Hess et al. (28) present a discrete choice model of air
traveler behavior using stated preference survey data.
Their study extends the work of Adler et al. (25) to model
the effects of air service and supply characteristics in air-
port and airline choice behavior. To estimate these effects,
the authors build a multinomial logit model as a function
of access time, airfare, and flight time for business, holi-
day, and VFR (visiting friends and relatives) travelers.
We apply a log-transform of the airfare and travel time
variables and scale by s and t values (Table 2). In the
study by Hess and Polak (29), the authors model air tra-
veler choice for both residents and non-residents through
a nested logit model, nesting by airport access mode, air-
line, and airport. The study quantifies the impact of
access time and access cost by mode, and, for access cost,
additionally by income group, in the overall calculation
of utility. We adopt Hess and Polak’s coefficients (lk) for
car and public transit, along with the access cost coeffi-
cient (uv) for low- and high-income groups (threshold at
$44,000) and access time (z) coefficient.

We utilize the coefficients for the models that capture
sensitivities of business travelers, which we justify as fol-
lows. A critical difference between our research and that
of discrete choice modeling scholarship is that we illus-
trate accessibility, while Hess and others seek to estimate
choices. By choosing to weigh our accessibility compo-
nents in a way that reflects the traveler with the greatest
sensitivity to time and cost, we are not unnecessarily
‘‘discounting’’ the value of accessibility to any particular
group. The goal of our model is to measure equity in
accessibility; presuming that certain populations with
lower values of time do not value accessibility in the
same way would embed bias against vulnerable popula-
tions. Additionally, the nature of our model allows for
different parameters to be input; thus, our choice of coef-
ficient is for illustration purposes only and does not limit
the future use of the model.

These coefficients help to provide intuition on the
general trade-offs individuals make across variables in

an aggregated accessibility calculation. The coefficients
we present, while derived from established utility models,
can also be calculated from travel survey data. However,
similar to the approach of Ryerson and Kim (4) we do
not conduct our own survey: the contribution of this
study is methodological as we provide a mathematical
framework of capturing accessibility. Rather, we moti-
vate the usage of a utility modeling approach in integrat-
ing individual impact and valuation of accessibility
variables into a single metric. Thus, the coefficients can
be adapted to the changing utility distributions for differ-
ent variables. Consequently, we emphasize the frame-
work of the model and relationships between the trade-
offs, as opposed to the precise values of the coefficients.

Case Study Definition and Data

This section describes the empirical implementation of
the AIM. We define our case study (Selection of Study
Airports and Geography), data for parameterizing PAI
variables (Data Collection for PAI Variables), and ana-
lytical intuition (Summary Statistics of Accessibility
Variables) before presenting our findings.

Selection of Study Airports and Geography

Our case study region is set to illustrate the power of our
method; if our results indicate that incorporating the con-
straints of disadvantaged travelers changes the nature of
accessibility estimates, we motivate a field of models that
focus on individualized accessibility. Recall that our
model optimizes for the maximum accessibility for each
census tract; that is, we compute AIM scores for each ori-
gin airport and each local access mode and select the
maximum score (Equation 1). To illustrate the AIM, we
choose to examine a regional airport market as opposed
to a single airport or catchment area; in doing so, we cap-
ture the complexity of choices facing a potential traveler
in making trade-offs between ground access and aviation
system variables based on their socioeconomic status.
For instance, certain travelers may be able to maximize
their accessibility by traveling to a relatively distant air-
port with more frequent service or lower airfare (4). Or,

Table 2. Priority Area Indicator (PAI) Coefficient Values

Coefficient Value

s (airfare) 23.534
t (travel time) 21.628
ulow-income (access cost for low-income) 20.036
uhigh-income (access cost for high-income) 20.024
z (access time) 20.052
lcar 0.179
ltransit 0.312
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similarly, one airport may be more accessible via transit
than another, and, as a less expensive mode, may be more
attractive to lower-income travelers (30). Our model cap-
tures these trade-offs that individuals make based on
their constraints and service characteristics.

As the AIM incorporates air service variables as an
important component, our case study implementation
involves a hypothetical traveler as defined by the variables
reflective of their census tract of origin, bound for a specific
destination airport, and considering a potential set of origin
airports across a region. By considering airport-to-airport
scenarios, we can collect service-level variables of which
accessibility is a function. Accessibility is at the metropoli-
tan statistical area (MSA) level, focusing on all census tracts
within an MSA; each hypothetical traveler from a census
tract has the possibility of originating their travel at one of
the three major airports in our study conurbation. We
choose the region of the Northeast Corridor of the U.S.,
home to the major metropolitan areas of Philadelphia,
Pennsylvania (with Philadelphia International [PHL]),
Baltimore, Maryland (with Baltimore/Washington
International Airport [BWI]), and Newark, New Jersey
(with Newark Liberty International Airport [EWR]).

The selected geographies provide a highly diverse socio-
economic region that presents a relevant case study for
measuring equity-based accessibility. Significant wealth
disparities exist across these areas: the Philadelphia and
Baltimore metropolitan areas rank in the top four for larg-
est income disparities and are cities with large minority
populations in inner-city areas (31). Comparatively, the
Newark area has higher incomes than the Baltimore and
Philadelphia regions. Moreover, the three major airports
in each urban center are ranked within the top 25 of busi-
est airports in the U.S. We recognize that in assigning each
census tract the airport and local mode that provides them
with the greatest accessibility, the traveler may or may not
choose that airport or mode in reality. While it is possible
that a hypothetical traveler from our case study census
tracts could, in theory, choose to travel from an airport
other than the three origin airports in our case study, our
three airports represent those with the maximum service
and most competitive pricing; thus, our three airports are
likely to offer the highest overall accessibility, which is
what the AIM intends to measure. For the purposes of this
study, we select the geographic bounds to illustrate our
methods and highlight the disparities in accessibility across
socioeconomic groups, thus justifying the bounding.

To illustrate our accessibility method across a variety
of destination airport service and spatial characteristics,
we select several destination airports based on market
size, proximity to the origin census tracts, and data avail-
ability. The destinations we use for illustration purposes
only are Austin–Bergstrom International Airport in
Austin, Texas (AUS, distant, medium market), Atlanta

(Georgia) Hartsfield-Jackson International (ATL, proxi-
mate, large market), and Nashville (Tennessee)
International (BNA, proximate, medium market).

Data Collection for PAI Variables

In the implementation of the AIM metric, we focus on
specific case study destination airports and the domestic
airlines that serve these routes using empirical data from
2019, thus representing the most recent pre-COVID data
(Table 3). In Table 3, note that we enumerate equity as a
PAI for clarity purposes in documenting the data defini-
tions and sources associated with modeling equity.
Equity is not explicitly notated as a PAI in the above,
but rather mathematically integrated throughout the
modeling framework.

We use Bureau of Transportation Statistics (BTS) Air
Carrier Statistics (T-100) to determine the number of
nonstop seats in 2019. Airfare data is collected from the
BTS Airline Origin and Destination Survey (DB1B mar-
ket data, 10% sample of airline tickets in the U.S.).
Flight times, delay statistics, and schedule delay are com-
puted for each origin–destination pair based on 2019
BTS on-time performance data. We parameterize these
statistics based on the ‘‘design day’’ perspective from the
Port Authority of New York and New Jersey and select
a weekday in the month of August to represent the opti-
mal month for air passenger activity in airports (not
necessarily peak demand) (36). Per the DOT Federal
Highway Administration recommendation, we take
averages for arrival and departure delays and airborne
time at the 90th percentile (37). Schedule delay and pro-
cessing time data is specific to the morning peak period
from 6 a.m. to 10 a.m.; if no flight data was available for
the origin–destination pair, the average across the eve-
ning peak from 4 p.m. to 8 p.m. was used (36). Schedule
delay represents the average headway of flights in the
peak period (38); according to Borenstein and Netz (39),
travelers’ preferred departures depend on the spread of
flights across a day, which is determined by airport com-
petition. Taking the schedule delay at peak time intervals
accounts for this demand-side effect. Processing times
for the PHL, BWI, and EWR airports are the average
Transportation Security Administration (TSA) wait
times for these peak periods (32).

In modeling local airport access, we estimate time and
cost for the local transportation modes of public transit
and private vehicle. Travel durations are calculated
through the Google Maps API between each origin cen-
sus tract centroid and destination airport pair; we utilize
the fastest travel time contingent on traffic and wait time
estimates (40). For the public transit mode, we assign to
each census tract the mode across bus, trolley, regional
rail, light rail, subway, and Amtrak that corresponds to

404 Transportation Research Record 2676(8)



the fastest travel time. Traveler cost for private vehicles is
based on national averages of gas prices, $3.09 per gallon,
and a car mileage rate of 24.9 miles per gallon, with an
additional $15 airport parking cost. Traveler cost for pub-
lic transit is either extracted from the local transit agency
information available with the Google Maps API or, if this
data is unavailable, calculated using the national average
Amtrak costs of $ 0.35 per passenger mile (33).

In our case study implementation, we limit the airport
access modes to automobile and public transit. While in
practice each individual has a likelihood of choosing
across many modes (e.g., ride-hailing, securing a ride
from a friend or family member, etc.), we assert that auto
and transit encompass the largest range of possibilities
here in just two options given their modal characteristics
and their individual constraint coefficients, thus helping
to illustrate the power of the AIM. For individuals with
access to an automobile, the accessibility provided by the
auto mode is roughly equivalent to (or even higher than)
the accessibility provided by ride-hail or taxi. For individ-
uals without access to an automobile, their accessibility is
based on the accessibility through transit. While it is

possible that a person without an automobile can choose
to take ride-hail, ride-hailing modes are not preferred
among low-income travelers who often rely more on tran-
sit or other lower-cost modes (40, 41). Because of the
greater cost sensitivities of taxis or nonavailability of pri-
vate cars, lower-income travelers are more likely to take
transit in ground access to the airport (30). Ride-hailing
poses additional challenges for lower-income people
because of their lack of credit or debit card, the predomi-
nant payment method used for ride-hailing in the U.S.
(42, 43). Estimating accessibility wherein individuals get a
ride from a relation does not contribute to our perspec-
tive of accessibility where we model the interaction
between individual impedance and accessibility, rather
than individual preferences. Toward illustrating accessi-
bility rather than precisely modeling the exact mode of
travel for each traveler, we utilize the assumptions here.

Summary Statistics of Accessibility Variables

The distribution of air service and airfare, as well as the
spatial distribution of individual constraints, influence

Table 3. Description of Priority Area Indicators (PAIs), Variables, and Data Sources

PAI Description Variable description Data source

Mobility (sij) Mobility is defined as efficiency
and speed of movement (8)

� Supply of nonstop seats
between origin and
destination airports

� 2019 T-100 Segment data

Affordability (Cij) Affordability includes air travel
costs for passengers

� Median airfare � DB1B Market 2019 data
(10% sample of airline’s
tickets)

Time and reliability (Tij) Time and reliability accounts for
temporal elements of air travel

� Average arrival and
departure delay

� Average airborne time
� Schedule delay of flights for

a.m./p.m. peak
� Processing times for a.m./

p.m. peak

� BTS August 2019 on-time
performance data

� TSA Wait Times data (32)

Airport access (Aiqk) Airport access constitutes
travel-related impacts between
census tract and origin airport

� Traveler time (in-vehicle and
wait time)

� Traveler cost

� Google Maps API
� Amtrak 2019 Performance

Report (33)
Equity (wv , ekv) Equity is defined as the degree

of fairness to which disbenefits
of transportation impacts are
distributed across social
groups (34)

� Sensitivity to pay for airfare
as a percentage of travelers
in income groups who have
never flown

� Propensity to travel by
private vehicle as a
percentage of zero-vehicle
households by income

� Propensity to travel by
public transit as frequency of
transit usage by income

� 2019 American Community
Survey 5-year data

� 2015 YouGov Air Travel
Frequency Poll (35)

� U.S. Department of
Transportation National and
Household Travel Trends
(24)

Note: BTS = Bureau of Transportation Statistics; T-100 = BTS Air Carrier Statistics (T-100); DB1B = BTS Airline Origin and Destination Survey (DB1B);

TSA = Transportation Security Administration. Note that we enumerate equity as a PAI for clarity purposes in documenting the data definitions and

sources associated with modeling equity. Equity is not explicitly notated as a PAI in the text, but rather mathematically integrated throughout the modeling

framework.
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overall accessibility; in this section, we evaluate their
overall influences in our accessibility equation. Service
differences specific to origin–destination pairs show var-
iation in supply of nonstop seats, while median airfare
relationships remain more constant across destination
airports with varying degrees of magnitude.

In Figure 1a, we observe an overall high frequency of
air service to ATL and low frequency to AUS from our
case study region. However, the number of nonstop seats
to our destination airports is unevenly distributed, with
EWR, BWI, and PHL providing varying relative degrees
of service to ATL, AUS, and BNA. In Figure 1b, across
all possible destinations, EWR consistently has the highest
airfare. Based on these trends, we might expect to see a rel-
atively strong accessibility measure in the Baltimore region
for the destination of ATL, an airport with both the great-
est supply and lowest airfare from BWI. Considering the
destination airport of AUS, BWI has the lowest airfare
while EWR has the largest number of seats. A classical
(impedance-based) accessibility calculation for a hypothe-
tical traveler traveling to AUS may see areas around
Baltimore and Newark with the highest accessibility.

As the AIM considers not just supply and service-
based variables but also individual variables, summaries
of our more urban focused variables help frame what to
expect in the AIM case study. Consider Figure 2, which
shows a map of median incomes across census tracts. We

observe a concentration of lower-income populations in
core inner-city areas near airports, with higher incomes
in suburban areas. Geographic areas west of EWR, far
north of PHL, in-between EWR and PHL, and far west
of BWI show the wealthiest suburbs in our case study. In
the urban core, inner suburbs, and far rural areas, we
find a more mixed economic profile. Contrary to accessi-
bility measures of supply-based impedance, we expect to
find greater accessibility in suburban areas in respect of
economic ability, while areas immediately proximate to
the airports with severely low income may experience
lower accessibility.

Spatial Analysis and Discussion

Based on the specifications of the AIM metric, we pres-
ent a case study of accessibility across our sample MSAs
for origin census tracts to three possible destination air-
ports (AUS, ATL, BNA). In this section, we present and
discuss our spatial analysis of the AIM metric, summar-
ize key takeaways, and comment on the functional form
and robustness of our model.

Case Study Results and Interpretation

The spatial maps discussed below demonstrate the
changes in accessibility when considering equity variables

Figure 1. Comparison of origin and destination airports for (a) supply of total nonstop seats in 2019 and (b) median airfare in 2019.
Note: Destination airports: ATL = Atlanta Hartsfield-Jackson International, Georgia; AUS = Austin–Bergstrom International, Austin, Texas; BNA = Nashville

International, Tennessee. Origin airports: BWI = Baltimore/Washington International, Maryland; EWR = Newark Liberty International, New Jersey; PHL =

Philadelphia International, Pennsylvania.
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and potential changes in transportation supply. It is
important to note that the model does not force a
hypothetical traveler to utilize a specific airport when
traveling to destination j; instead, we construct a matrix
with the AIM scores for EWR, BWI, and PHL to each
destination airport for each census tract for each mode,
and select the largest AIM associated with each census
tract. Thus, each census tract’s accessibility corresponds
with its maximum possible accessibility. In creating the
plots, we normalize the long-distance and airport access
impedance factors to a range relative to each other. The
scale for each plot is normalized to a range of 0 to 1 for
visual purposes.

Figures 3–5 represent spatial distributions of the AIM
metric for the destination airports of AUS, ATL, and
BNA. Figures 3a, 4a and 5a are a traditional representa-
tion of accessibility that accounts for time, cost, and
locational impedance, where accessibility is relatively
higher in the catchment areas proximate to the airports.
This is achieved by encoding the cohort-specific variables
(wv, ekv) as constants by setting these parameters equal to
one (recall that wv contributes to individuals’ ability to
afford the price of airfare and ekv influences individuals’
ability to travel to the airport by private vehicle and
transit modes). Figures 3b, 4b and 5b show the spatial
analysis when we parameterize the equity variables (wv,
ekv) as specified above under Parameterizing Cohort-
based Coefficients.

Figure 3a displays greater accessibility to Austin for
the geographic areas around Baltimore and Newark.
This is largely a result of, first, the higher magnitude of
seats from EWR, and, second, the more favorable travel-
ing conditions with BWI’s lowest airfare factor (Figure

1b). Once income-specific constraints are accounted for
in Figure 3b, the higher accessibility areas are more con-
centrated in the suburbs surrounding EWR. The higher
concentration of low-income populations in Baltimore
down weight the AIMs in that area, resulting in rela-
tively lower accessibility than the areas surrounding
EWR despite similar supply levels and lower airfare.
Correspondingly, the high accessibility in the EWR
region in Figure 3b can be largely attributed to the afflu-
ent suburbs of Newark where income-related weights are
considered more of an inconvenience than an impedance
to travel (Figure 2).

Figures 4 and 5 showcase AIM spatial distributions
for the destination airports of ATL and BNA respec-
tively where large aviation supply and low effects from
airfare and travel time influence accessibility. Similar to
Figure 3, individual constraints and sensitivities related
to income affect the distribution of accessibility, particu-
larly in areas proximate to airports. The higher supply of
seats from PHL–BNA and BWI–ATL, as well as both
PHL–BNA’s and BWI–ATL’s low airfare (Figure 1b)
produce regions of high accessibility in the surrounding
Philadelphia and Baltimore areas.

In Figures 4 and 5, we also demonstrate how a change
in aviation supply and service characteristics influences
spatial accessibility scores. From Figure 1a, ATL has an
overwhelmingly higher number of nonstop seats across
EWR, BWI, and PHL when compared with AUS and
BNA. Yet, comparing the spatial distributions of accessi-
bility across destination airports, lower-income inner-city
populations and far rural areas consistently experience
relatively lower accessibility, despite an increase in flight
seat availability to ATL. Accessibility remains higher for
wealthier suburban areas with both the ability and prox-
imity to access air transportation supply.

Summary of Key Findings

The analysis and interpretations in the previous section
present several critical advances in understanding the
relationship between equity and accessibility; these key
findings are summarized below.

Proximity to Airports Does Not Imply High Long-Distance
Accessibility. In Figures 3–5, low-income areas near
EWR, BWI, and PHL consistently produce a severe con-
centration of low accessibility across destinations. The
AIM down weights their accessibility based on their low
income, and thus greater sensitivity to airfare and
unstable access to a vehicle. Accessibility peaks just out-
side the inner-city region in wealthier suburbs where peo-
ple have both the socioeconomic means and proximity to
airports to travel long-distance. Thus, a major finding of
this study is in the integration of cohort-specific variables

Figure 2. Median income across the Newark, Philadelphia, and
Baltimore area by census tract.
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in accessibility modeling: traditional accessibility models
do not capture the disparities in accessibility across
socioeconomic groups.

Equity and Cohort Variables Can Influence the Relative
Accessibility Scores. The integration of cohort-level vari-
ables can alter the spread of accessibility and capture

finer details within accessibility. For example, with the
Austin AIM, when we account for airfare sensitivity
among low-income groups, the higher-income suburbs of
Newark are able to afford higher prices of airfare and
benefit from reliable vehicle access despite the greater
impedance from EWR resulting from airfare. This find-
ing indicates that previous accessibility models that
largely depend on factors like supply, cost, and time,

Figure 3. AIMs for AUS for (a) base and (b) cohort accessibility.
Note: AIM = Aviation-accessibility Integrated Mobility; AUS = Austin–Bergstrom International Airport, Austin, Texas.

Figure 4. AIMs for ATL for (a) base and (b) cohort accessibility.
Note: AIM = Aviation-accessibility Integrated Mobility; ATL = Hartsfield-Jackson International Airport, Atlanta, Georgia.
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rather than individual-level variables, miss out on key
features of accessibility, while models that consider
equity capture the needs and constraints of lower-income
and disadvantaged populations.

Accessibility Varies Significantly Because of Differences in Air
Transportation Supply and Service Characteristics across Origin–
Destination (OD) Pairs. The differences across destination
airports and the spread of accessibility across a region
can be attributed to the supply of nonstop seats and the
relative weights of airfare and travel time as illustrated
by the impedance measure. Comparing the relative
AIMs across census tracts and origin–destination pairs
in Figures 3–5, differences in air service characteristics
across OD pairs influence individuals’ best accessibility.
Increasing the supply of nonstop seats from AUS to
ATL increases accessibility for higher-income suburban
areas with the physical and financial means to take
advantage of supply, while accessibility for lower-income
inner-city areas remains low. This is a critical finding
from the study: expanding aviation supply exacerbates
disparities in access, rather than increasing access for all
populations.

Choice of Functional Form

Before outlining policy implications based on our case
study findings, we want to address the choice of the func-
tional form of the model and the spatial implications of the
model findings. We tested several model structures, includ-
ing one in which we exponentiated the impedance measure

(Mqijk) and considered logarithmic utility coefficient curves.
In doing so, our results captured similar trends in the distri-
bution of accessibility, reaffirming the robustness of our
model results. This indicates that multiple functional forms
of models can capture the disparities in accessibility we seek
to illustrate. Thus, this reinforces and solidifies our cohort-
based approach; one can perturb the model structure yet
achieve the same conclusions about the role of equity in
measuring accessibility. We do not assert necessarily that
our methodology is the sole way to model accessibility;
rather, our contribution is in implementing a cohort-based
approach that incorporates individual constraints and pre-
ferences into a single accessibility metric.

Policy Implications

This study’s methodology contributes a novel perspective
in defining accessibility both mathematically and concep-
tually in an individual-specific analysis. Considering indi-
vidual means and constraints is necessary in capturing
accessibility wherein low-income populations near airports
are more sensitive to airfare and experience lower vehicle
availability. The empirical spatial analysis for a socioeco-
nomically and demographically diverse region with large
airport markets challenges commonly used isochrone and
supply-based accessibility assessments. Because we show-
case the nuances of accessibility through our cohort-based
approach, we motivate a field of accessibility models that
capture individual constraints and encourage implement-
ing the AIM model at a national level.

The AIMmetric also serves as a planning tool to study
how infrastructure investments affect accessibility; thus,

Figure 5. AIMs for BNA for (a) base and (b) cohort accessibility.
Note: AIM = Aviation-accessibility Integrated Mobility; BNA = Nashville International Airport, Tennessee.
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we identify projects that help guide the federal funding’s
prioritization for aviation infrastructure improvements
that seek to improve access for disadvantaged popula-
tions. In the application of our model, we consider how
changes in transportation supply can influence accessibil-
ity across socioeconomic groups. We find that expanding
air services does not affect all populations equally; rather,
when considering the perspective of vulnerable travelers,
the accessibility benefits are dispersed across socioeco-
nomic groups. By incorporating these constraints into an
accessibility modeling framework, simply building more
runways or expanding aviation supply will not improve
accessibility for low-income individuals and will only
benefit those in wealthier communities.

Since our findings indicate that incorporating the
constraints of disadvantaged travelers changes the dis-
tribution of accessibility, we can use the AIM to model
accessibility across a wider range of geographic regions
at a national scale. In doing so and in addressing the
limitations of the study, we would want to build a
national map of accessibility and move beyond our ini-
tial case study geography. We further encourage build-
ing on the model and adding additional variables that
capture the nuances within accessibility; for example,
additional ground access modes of transportation,
convenience-related features of air travel, and cohorts
beyond income groups. In doing so, qualitative travel
surveys of low-income populations would more pre-
cisely model the PAI and cohort-based coefficients.
These methodological improvements could also pro-
vide evidence toward more nuanced policy
recommendations—for example, highlighting the need
for expanding access through intermodal and interre-
gional transportation systems.
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